Use AttrVec in more places.
In some places we use `Vec<Attribute>` and some places we use `ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points where we have to convert between `Vec` and `ThinVec`. This commit changes the places that use `Vec<Attribute>` to use `AttrVec`. A lot of this is mechanical and boring, but there are some interesting parts: - It adds a few new methods to `ThinVec`. - It implements `MapInPlace` for `ThinVec`, and introduces a macro to avoid the repetition of this trait for `Vec`, `SmallVec`, and `ThinVec`. Overall, it makes the code a little nicer, and has little effect on performance. But it is a precursor to removing `rustc_data_structures::thin_vec::ThinVec` and replacing it with `thin_vec::ThinVec`, which is implemented more efficiently.
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
use crate::thin_vec::ThinVec;
|
||||
use smallvec::{Array, SmallVec};
|
||||
use std::ptr;
|
||||
|
||||
@@ -15,94 +16,64 @@ pub trait MapInPlace<T>: Sized {
|
||||
I: IntoIterator<Item = T>;
|
||||
}
|
||||
|
||||
impl<T> MapInPlace<T> for Vec<T> {
|
||||
fn flat_map_in_place<F, I>(&mut self, mut f: F)
|
||||
where
|
||||
F: FnMut(T) -> I,
|
||||
I: IntoIterator<Item = T>,
|
||||
{
|
||||
let mut read_i = 0;
|
||||
let mut write_i = 0;
|
||||
unsafe {
|
||||
let mut old_len = self.len();
|
||||
self.set_len(0); // make sure we just leak elements in case of panic
|
||||
// The implementation of this method is syntactically identical for all the
|
||||
// different vector types.
|
||||
macro_rules! flat_map_in_place {
|
||||
() => {
|
||||
fn flat_map_in_place<F, I>(&mut self, mut f: F)
|
||||
where
|
||||
F: FnMut(T) -> I,
|
||||
I: IntoIterator<Item = T>,
|
||||
{
|
||||
let mut read_i = 0;
|
||||
let mut write_i = 0;
|
||||
unsafe {
|
||||
let mut old_len = self.len();
|
||||
self.set_len(0); // make sure we just leak elements in case of panic
|
||||
|
||||
while read_i < old_len {
|
||||
// move the read_i'th item out of the vector and map it
|
||||
// to an iterator
|
||||
let e = ptr::read(self.as_ptr().add(read_i));
|
||||
let iter = f(e).into_iter();
|
||||
read_i += 1;
|
||||
while read_i < old_len {
|
||||
// move the read_i'th item out of the vector and map it
|
||||
// to an iterator
|
||||
let e = ptr::read(self.as_ptr().add(read_i));
|
||||
let iter = f(e).into_iter();
|
||||
read_i += 1;
|
||||
|
||||
for e in iter {
|
||||
if write_i < read_i {
|
||||
ptr::write(self.as_mut_ptr().add(write_i), e);
|
||||
write_i += 1;
|
||||
} else {
|
||||
// If this is reached we ran out of space
|
||||
// in the middle of the vector.
|
||||
// However, the vector is in a valid state here,
|
||||
// so we just do a somewhat inefficient insert.
|
||||
self.set_len(old_len);
|
||||
self.insert(write_i, e);
|
||||
for e in iter {
|
||||
if write_i < read_i {
|
||||
ptr::write(self.as_mut_ptr().add(write_i), e);
|
||||
write_i += 1;
|
||||
} else {
|
||||
// If this is reached we ran out of space
|
||||
// in the middle of the vector.
|
||||
// However, the vector is in a valid state here,
|
||||
// so we just do a somewhat inefficient insert.
|
||||
self.set_len(old_len);
|
||||
self.insert(write_i, e);
|
||||
|
||||
old_len = self.len();
|
||||
self.set_len(0);
|
||||
old_len = self.len();
|
||||
self.set_len(0);
|
||||
|
||||
read_i += 1;
|
||||
write_i += 1;
|
||||
read_i += 1;
|
||||
write_i += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// write_i tracks the number of actually written new items.
|
||||
self.set_len(write_i);
|
||||
// write_i tracks the number of actually written new items.
|
||||
self.set_len(write_i);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl<T> MapInPlace<T> for Vec<T> {
|
||||
flat_map_in_place!();
|
||||
}
|
||||
|
||||
impl<T, A: Array<Item = T>> MapInPlace<T> for SmallVec<A> {
|
||||
fn flat_map_in_place<F, I>(&mut self, mut f: F)
|
||||
where
|
||||
F: FnMut(T) -> I,
|
||||
I: IntoIterator<Item = T>,
|
||||
{
|
||||
let mut read_i = 0;
|
||||
let mut write_i = 0;
|
||||
unsafe {
|
||||
let mut old_len = self.len();
|
||||
self.set_len(0); // make sure we just leak elements in case of panic
|
||||
|
||||
while read_i < old_len {
|
||||
// move the read_i'th item out of the vector and map it
|
||||
// to an iterator
|
||||
let e = ptr::read(self.as_ptr().add(read_i));
|
||||
let iter = f(e).into_iter();
|
||||
read_i += 1;
|
||||
|
||||
for e in iter {
|
||||
if write_i < read_i {
|
||||
ptr::write(self.as_mut_ptr().add(write_i), e);
|
||||
write_i += 1;
|
||||
} else {
|
||||
// If this is reached we ran out of space
|
||||
// in the middle of the vector.
|
||||
// However, the vector is in a valid state here,
|
||||
// so we just do a somewhat inefficient insert.
|
||||
self.set_len(old_len);
|
||||
self.insert(write_i, e);
|
||||
|
||||
old_len = self.len();
|
||||
self.set_len(0);
|
||||
|
||||
read_i += 1;
|
||||
write_i += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// write_i tracks the number of actually written new items.
|
||||
self.set_len(write_i);
|
||||
}
|
||||
}
|
||||
flat_map_in_place!();
|
||||
}
|
||||
|
||||
impl<T> MapInPlace<T> for ThinVec<T> {
|
||||
flat_map_in_place!();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user