Rename TypeCx -> PatCx

This commit is contained in:
Nadrieril
2024-03-13 13:56:06 +01:00
parent cb15bf6256
commit 4fc35c46ff
6 changed files with 68 additions and 68 deletions

View File

@@ -242,7 +242,7 @@
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
@@ -716,7 +716,7 @@ use std::fmt;
use crate::constructor::{Constructor, ConstructorSet, IntRange};
use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat};
use crate::{Captures, MatchArm, PrivateUninhabitedField, TypeCx};
use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
use self::PlaceValidity::*;
@@ -728,7 +728,7 @@ pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
}
/// Context that provides information for usefulness checking.
struct UsefulnessCtxt<'a, Cx: TypeCx> {
struct UsefulnessCtxt<'a, Cx: PatCx> {
/// The context for type information.
tycx: &'a Cx,
/// Collect the patterns found useful during usefulness checking. This is used to lint
@@ -738,7 +738,7 @@ struct UsefulnessCtxt<'a, Cx: TypeCx> {
complexity_level: usize,
}
impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> {
impl<'a, Cx: PatCx> UsefulnessCtxt<'a, Cx> {
fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> {
self.complexity_level += complexity_add;
if self
@@ -752,26 +752,26 @@ impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> {
}
/// Context that provides information local to a place under investigation.
struct PlaceCtxt<'a, Cx: TypeCx> {
struct PlaceCtxt<'a, Cx: PatCx> {
cx: &'a Cx,
/// Type of the place under investigation.
ty: &'a Cx::Ty,
}
impl<'a, Cx: TypeCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: TypeCx> Clone for PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> {
fn clone(&self) -> Self {
Self { cx: self.cx, ty: self.ty }
}
}
impl<'a, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish()
}
}
impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> {
fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
self.cx.ctor_arity(ctor, self.ty)
}
@@ -802,7 +802,7 @@ impl PlaceValidity {
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
@@ -825,7 +825,7 @@ impl fmt::Display for PlaceValidity {
/// Data about a place under investigation. Its methods contain a lot of the logic used to analyze
/// the constructors in the matrix.
struct PlaceInfo<Cx: TypeCx> {
struct PlaceInfo<Cx: PatCx> {
/// The type of the place.
ty: Cx::Ty,
/// Whether the place is a private uninhabited field. If so we skip this field during analysis
@@ -837,7 +837,7 @@ struct PlaceInfo<Cx: TypeCx> {
is_scrutinee: bool,
}
impl<Cx: TypeCx> PlaceInfo<Cx> {
impl<Cx: PatCx> PlaceInfo<Cx> {
/// Given a constructor for the current place, we return one `PlaceInfo` for each field of the
/// constructor.
fn specialize<'a>(
@@ -932,7 +932,7 @@ impl<Cx: TypeCx> PlaceInfo<Cx> {
}
}
impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
impl<Cx: PatCx> Clone for PlaceInfo<Cx> {
fn clone(&self) -> Self {
Self {
ty: self.ty.clone(),
@@ -947,7 +947,7 @@ impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
// The three lifetimes are:
// - 'p coming from the input
// - Cx global compilation context
struct PatStack<'p, Cx: TypeCx> {
struct PatStack<'p, Cx: PatCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
/// Sometimes we know that as far as this row is concerned, the current case is already handled
@@ -956,13 +956,13 @@ struct PatStack<'p, Cx: TypeCx> {
relevant: bool,
}
impl<'p, Cx: TypeCx> Clone for PatStack<'p, Cx> {
impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> {
fn clone(&self) -> Self {
Self { pats: self.pats.clone(), relevant: self.relevant }
}
}
impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
impl<'p, Cx: PatCx> PatStack<'p, Cx> {
fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self {
PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
}
@@ -1022,7 +1022,7 @@ impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
@@ -1035,7 +1035,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, Cx: TypeCx> {
struct MatrixRow<'p, Cx: PatCx> {
// The patterns in the row.
pats: PatStack<'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
@@ -1055,7 +1055,7 @@ struct MatrixRow<'p, Cx: TypeCx> {
intersects: BitSet<usize>,
}
impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
@@ -1104,7 +1104,7 @@ impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
@@ -1121,7 +1121,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, Cx: TypeCx> {
struct Matrix<'p, Cx: PatCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
@@ -1134,7 +1134,7 @@ struct Matrix<'p, Cx: TypeCx> {
wildcard_row_is_relevant: bool,
}
impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
impl<'p, Cx: PatCx> Matrix<'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) {
@@ -1256,7 +1256,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // column validity
/// ```
impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
@@ -1347,15 +1347,15 @@ impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug)]
struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>);
impl<Cx: TypeCx> Clone for WitnessStack<Cx> {
impl<Cx: PatCx> Clone for WitnessStack<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: TypeCx> WitnessStack<Cx> {
impl<Cx: PatCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
@@ -1400,15 +1400,15 @@ impl<Cx: TypeCx> WitnessStack<Cx> {
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug)]
struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>);
impl<Cx: TypeCx> Clone for WitnessMatrix<Cx> {
impl<Cx: PatCx> Clone for WitnessMatrix<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: TypeCx> WitnessMatrix<Cx> {
impl<Cx: PatCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(Vec::new())
@@ -1482,7 +1482,7 @@ impl<Cx: TypeCx> WitnessMatrix<Cx> {
///
/// We can however get false negatives because exhaustiveness does not explore all cases. See the
/// section on relevancy at the top of the file.
fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
fn collect_overlapping_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
overlap_range: IntRange,
matrix: &Matrix<'p, Cx>,
@@ -1541,7 +1541,7 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
}
/// Collect ranges that have a singleton gap between them.
fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>(
fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
gap_range: &IntRange,
matrix: &Matrix<'p, Cx>,
@@ -1582,7 +1582,7 @@ fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>(
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(mcx), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>(
mcx: &mut UsefulnessCtxt<'a, Cx>,
matrix: &mut Matrix<'p, Cx>,
) -> Result<WitnessMatrix<Cx>, Cx::Error> {
@@ -1679,7 +1679,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness<'p, Cx: TypeCx> {
pub enum Usefulness<'p, Cx: PatCx> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
@@ -1690,11 +1690,11 @@ pub enum Usefulness<'p, Cx: TypeCx> {
}
/// Report whether this pattern was found useful, and its subpatterns that were not useful if any.
fn collect_pattern_usefulness<'p, Cx: TypeCx>(
fn collect_pattern_usefulness<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> Usefulness<'p, Cx> {
fn pat_is_useful<'p, Cx: TypeCx>(
fn pat_is_useful<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> bool {
@@ -1732,7 +1732,7 @@ fn collect_pattern_usefulness<'p, Cx: TypeCx>(
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: TypeCx> {
pub struct UsefulnessReport<'p, Cx: PatCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
@@ -1742,7 +1742,7 @@ pub struct UsefulnessReport<'p, Cx: TypeCx> {
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(tycx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: TypeCx>(
pub fn compute_match_usefulness<'p, Cx: PatCx>(
tycx: &Cx,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,