transmutability: Mark edges by ranges, not values
In the `Tree` and `Dfa` representations of a type's layout, store byte ranges rather than needing to separately store each byte value. This permits us to, for example, represent a `u8` using a single 0..=255 edge in the DFA rather than using 256 separate edges. This leads to drastic performance improvements. For example, on the author's 2024 MacBook Pro, the time to convert the `Tree` representation of a `u64` to its equivalent DFA representation drops from ~8.5ms to ~1us, a reduction of ~8,500x. See `bench_dfa_from_tree`. Similarly, the time to execute a transmutability query from `u64` to `u64` drops from ~35us to ~1.7us, a reduction of ~20x. See `bench_transmute`.
This commit is contained in:
@@ -1,8 +1,9 @@
|
||||
use std::fmt;
|
||||
use std::ops::RangeInclusive;
|
||||
use std::sync::atomic::{AtomicU32, Ordering};
|
||||
|
||||
use super::{Byte, Ref, Tree, Uninhabited};
|
||||
use crate::Map;
|
||||
use crate::{Map, Set};
|
||||
|
||||
#[derive(PartialEq)]
|
||||
#[cfg_attr(test, derive(Clone))]
|
||||
@@ -20,7 +21,7 @@ pub(crate) struct Transitions<R>
|
||||
where
|
||||
R: Ref,
|
||||
{
|
||||
byte_transitions: Map<Byte, State>,
|
||||
byte_transitions: EdgeSet<State>,
|
||||
ref_transitions: Map<R, State>,
|
||||
}
|
||||
|
||||
@@ -29,7 +30,7 @@ where
|
||||
R: Ref,
|
||||
{
|
||||
fn default() -> Self {
|
||||
Self { byte_transitions: Map::default(), ref_transitions: Map::default() }
|
||||
Self { byte_transitions: EdgeSet::empty(), ref_transitions: Map::default() }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -56,15 +57,10 @@ where
|
||||
{
|
||||
#[cfg(test)]
|
||||
pub(crate) fn bool() -> Self {
|
||||
let mut transitions: Map<State, Transitions<R>> = Map::default();
|
||||
let start = State::new();
|
||||
let accept = State::new();
|
||||
|
||||
transitions.entry(start).or_default().byte_transitions.insert(Byte::Init(0x00), accept);
|
||||
|
||||
transitions.entry(start).or_default().byte_transitions.insert(Byte::Init(0x01), accept);
|
||||
|
||||
Self { transitions, start, accept }
|
||||
Self::from_transitions(|accept| Transitions {
|
||||
byte_transitions: EdgeSet::new(Byte::new(0x00..=0x01), accept),
|
||||
ref_transitions: Map::default(),
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn unit() -> Self {
|
||||
@@ -76,23 +72,24 @@ where
|
||||
}
|
||||
|
||||
pub(crate) fn from_byte(byte: Byte) -> Self {
|
||||
let mut transitions: Map<State, Transitions<R>> = Map::default();
|
||||
let start = State::new();
|
||||
let accept = State::new();
|
||||
|
||||
transitions.entry(start).or_default().byte_transitions.insert(byte, accept);
|
||||
|
||||
Self { transitions, start, accept }
|
||||
Self::from_transitions(|accept| Transitions {
|
||||
byte_transitions: EdgeSet::new(byte, accept),
|
||||
ref_transitions: Map::default(),
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn from_ref(r: R) -> Self {
|
||||
let mut transitions: Map<State, Transitions<R>> = Map::default();
|
||||
Self::from_transitions(|accept| Transitions {
|
||||
byte_transitions: EdgeSet::empty(),
|
||||
ref_transitions: [(r, accept)].into_iter().collect(),
|
||||
})
|
||||
}
|
||||
|
||||
fn from_transitions(f: impl FnOnce(State) -> Transitions<R>) -> Self {
|
||||
let start = State::new();
|
||||
let accept = State::new();
|
||||
|
||||
transitions.entry(start).or_default().ref_transitions.insert(r, accept);
|
||||
|
||||
Self { transitions, start, accept }
|
||||
Self { transitions: [(start, f(accept))].into_iter().collect(), start, accept }
|
||||
}
|
||||
|
||||
pub(crate) fn from_tree(tree: Tree<!, R>) -> Result<Self, Uninhabited> {
|
||||
@@ -132,13 +129,16 @@ where
|
||||
|
||||
for (source, transition) in other.transitions {
|
||||
let fix_state = |state| if state == other.start { self.accept } else { state };
|
||||
let entry = transitions.entry(fix_state(source)).or_default();
|
||||
for (edge, destination) in transition.byte_transitions {
|
||||
entry.byte_transitions.insert(edge, fix_state(destination));
|
||||
}
|
||||
for (edge, destination) in transition.ref_transitions {
|
||||
entry.ref_transitions.insert(edge, fix_state(destination));
|
||||
}
|
||||
let byte_transitions = transition.byte_transitions.map_states(&fix_state);
|
||||
let ref_transitions = transition
|
||||
.ref_transitions
|
||||
.into_iter()
|
||||
.map(|(r, state)| (r, fix_state(state)))
|
||||
.collect();
|
||||
|
||||
let old = transitions
|
||||
.insert(fix_state(source), Transitions { byte_transitions, ref_transitions });
|
||||
assert!(old.is_none());
|
||||
}
|
||||
|
||||
Self { transitions, start, accept }
|
||||
@@ -170,67 +170,111 @@ where
|
||||
|
||||
let start = mapped((Some(a.start), Some(b.start)));
|
||||
let mut transitions: Map<State, Transitions<R>> = Map::default();
|
||||
let mut queue = vec![(Some(a.start), Some(b.start))];
|
||||
let empty_transitions = Transitions::default();
|
||||
|
||||
while let Some((a_src, b_src)) = queue.pop() {
|
||||
struct WorkQueue {
|
||||
queue: Vec<(Option<State>, Option<State>)>,
|
||||
// Track all entries ever enqueued to avoid duplicating work. This
|
||||
// gives us a guarantee that a given (a_state, b_state) pair will
|
||||
// only ever be visited once.
|
||||
enqueued: Set<(Option<State>, Option<State>)>,
|
||||
}
|
||||
impl WorkQueue {
|
||||
fn enqueue(&mut self, a_state: Option<State>, b_state: Option<State>) {
|
||||
if self.enqueued.insert((a_state, b_state)) {
|
||||
self.queue.push((a_state, b_state));
|
||||
}
|
||||
}
|
||||
}
|
||||
let mut queue = WorkQueue { queue: Vec::new(), enqueued: Set::default() };
|
||||
queue.enqueue(Some(a.start), Some(b.start));
|
||||
|
||||
while let Some((a_src, b_src)) = queue.queue.pop() {
|
||||
let src = mapped((a_src, b_src));
|
||||
if src == accept {
|
||||
// While it's possible to have a DFA whose accept state has
|
||||
// out-edges, these do not affect the semantics of the DFA, and
|
||||
// so there's no point in processing them. Continuing here also
|
||||
// has the advantage of guaranteeing that we only ever process a
|
||||
// given node in the output DFA once. In particular, with the
|
||||
// exception of the accept state, we ensure that we only push a
|
||||
// given node to the `queue` once. This allows the following
|
||||
// code to assume that we're processing a node we've never
|
||||
// processed before, which means we never need to merge two edge
|
||||
// sets - we only ever need to construct a new edge set from
|
||||
// whole cloth.
|
||||
continue;
|
||||
}
|
||||
|
||||
let a_transitions =
|
||||
a_src.and_then(|a_src| a.transitions.get(&a_src)).unwrap_or(&empty_transitions);
|
||||
let b_transitions =
|
||||
b_src.and_then(|b_src| b.transitions.get(&b_src)).unwrap_or(&empty_transitions);
|
||||
|
||||
let byte_transitions =
|
||||
a_transitions.byte_transitions.keys().chain(b_transitions.byte_transitions.keys());
|
||||
|
||||
for byte_transition in byte_transitions {
|
||||
let a_dst = a_transitions.byte_transitions.get(byte_transition).copied();
|
||||
let b_dst = b_transitions.byte_transitions.get(byte_transition).copied();
|
||||
a_transitions.byte_transitions.union(&b_transitions.byte_transitions);
|
||||
|
||||
let byte_transitions = byte_transitions.map_states(|(a_dst, b_dst)| {
|
||||
assert!(a_dst.is_some() || b_dst.is_some());
|
||||
|
||||
let src = mapped((a_src, b_src));
|
||||
let dst = mapped((a_dst, b_dst));
|
||||
|
||||
transitions.entry(src).or_default().byte_transitions.insert(*byte_transition, dst);
|
||||
|
||||
if !transitions.contains_key(&dst) {
|
||||
queue.push((a_dst, b_dst))
|
||||
}
|
||||
}
|
||||
queue.enqueue(a_dst, b_dst);
|
||||
mapped((a_dst, b_dst))
|
||||
});
|
||||
|
||||
let ref_transitions =
|
||||
a_transitions.ref_transitions.keys().chain(b_transitions.ref_transitions.keys());
|
||||
|
||||
for ref_transition in ref_transitions {
|
||||
let a_dst = a_transitions.ref_transitions.get(ref_transition).copied();
|
||||
let b_dst = b_transitions.ref_transitions.get(ref_transition).copied();
|
||||
let ref_transitions = ref_transitions
|
||||
.map(|ref_transition| {
|
||||
let a_dst = a_transitions.ref_transitions.get(ref_transition).copied();
|
||||
let b_dst = b_transitions.ref_transitions.get(ref_transition).copied();
|
||||
|
||||
assert!(a_dst.is_some() || b_dst.is_some());
|
||||
assert!(a_dst.is_some() || b_dst.is_some());
|
||||
|
||||
let src = mapped((a_src, b_src));
|
||||
let dst = mapped((a_dst, b_dst));
|
||||
queue.enqueue(a_dst, b_dst);
|
||||
(*ref_transition, mapped((a_dst, b_dst)))
|
||||
})
|
||||
.collect();
|
||||
|
||||
transitions.entry(src).or_default().ref_transitions.insert(*ref_transition, dst);
|
||||
|
||||
if !transitions.contains_key(&dst) {
|
||||
queue.push((a_dst, b_dst))
|
||||
}
|
||||
}
|
||||
let old = transitions.insert(src, Transitions { byte_transitions, ref_transitions });
|
||||
// See `if src == accept { ... }` above. The comment there explains
|
||||
// why this assert is valid.
|
||||
assert_eq!(old, None);
|
||||
}
|
||||
|
||||
Self { transitions, start, accept }
|
||||
}
|
||||
|
||||
pub(crate) fn bytes_from(&self, start: State) -> Option<&Map<Byte, State>> {
|
||||
Some(&self.transitions.get(&start)?.byte_transitions)
|
||||
pub(crate) fn states_from(
|
||||
&self,
|
||||
state: State,
|
||||
src_validity: RangeInclusive<u8>,
|
||||
) -> impl Iterator<Item = (Byte, State)> {
|
||||
self.transitions
|
||||
.get(&state)
|
||||
.map(move |t| t.byte_transitions.states_from(src_validity))
|
||||
.into_iter()
|
||||
.flatten()
|
||||
}
|
||||
|
||||
pub(crate) fn byte_from(&self, start: State, byte: Byte) -> Option<State> {
|
||||
self.transitions.get(&start)?.byte_transitions.get(&byte).copied()
|
||||
pub(crate) fn get_uninit_edge_dst(&self, state: State) -> Option<State> {
|
||||
let transitions = self.transitions.get(&state)?;
|
||||
transitions.byte_transitions.get_uninit_edge_dst()
|
||||
}
|
||||
|
||||
pub(crate) fn refs_from(&self, start: State) -> Option<&Map<R, State>> {
|
||||
Some(&self.transitions.get(&start)?.ref_transitions)
|
||||
pub(crate) fn bytes_from(&self, start: State) -> impl Iterator<Item = (Byte, State)> {
|
||||
self.transitions
|
||||
.get(&start)
|
||||
.into_iter()
|
||||
.flat_map(|transitions| transitions.byte_transitions.iter())
|
||||
}
|
||||
|
||||
pub(crate) fn refs_from(&self, start: State) -> impl Iterator<Item = (R, State)> {
|
||||
self.transitions
|
||||
.get(&start)
|
||||
.into_iter()
|
||||
.flat_map(|transitions| transitions.ref_transitions.iter())
|
||||
.map(|(r, s)| (*r, *s))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -241,15 +285,25 @@ where
|
||||
) -> Self {
|
||||
let start = State(start);
|
||||
let accept = State(accept);
|
||||
let mut transitions: Map<State, Transitions<R>> = Map::default();
|
||||
let mut transitions: Map<State, Vec<(Byte, State)>> = Map::default();
|
||||
|
||||
for &(src, edge, dst) in edges {
|
||||
let src = State(src);
|
||||
let dst = State(dst);
|
||||
let old = transitions.entry(src).or_default().byte_transitions.insert(edge.into(), dst);
|
||||
assert!(old.is_none());
|
||||
for (src, edge, dst) in edges.iter().copied() {
|
||||
transitions.entry(State(src)).or_default().push((edge.into(), State(dst)));
|
||||
}
|
||||
|
||||
let transitions = transitions
|
||||
.into_iter()
|
||||
.map(|(src, edges)| {
|
||||
(
|
||||
src,
|
||||
Transitions {
|
||||
byte_transitions: EdgeSet::from_edges(edges),
|
||||
ref_transitions: Map::default(),
|
||||
},
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
Self { start, accept, transitions }
|
||||
}
|
||||
}
|
||||
@@ -277,3 +331,242 @@ where
|
||||
writeln!(f, "}}")
|
||||
}
|
||||
}
|
||||
|
||||
use edge_set::EdgeSet;
|
||||
mod edge_set {
|
||||
use std::cmp;
|
||||
|
||||
use run::*;
|
||||
use smallvec::{SmallVec, smallvec};
|
||||
|
||||
use super::*;
|
||||
mod run {
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use super::*;
|
||||
use crate::layout::Byte;
|
||||
|
||||
/// A logical set of edges.
|
||||
///
|
||||
/// A `Run` encodes one edge for every byte value in `start..=end`
|
||||
/// pointing to `dst`.
|
||||
#[derive(Eq, PartialEq, Copy, Clone, Debug)]
|
||||
pub(super) struct Run<S> {
|
||||
// `start` and `end` are both inclusive (ie, closed) bounds, as this
|
||||
// is required in order to be able to store 0..=255. We provide
|
||||
// setters and getters which operate on closed/open ranges, which
|
||||
// are more intuitive and easier for performing offset math.
|
||||
start: u8,
|
||||
end: u8,
|
||||
pub(super) dst: S,
|
||||
}
|
||||
|
||||
impl<S> Run<S> {
|
||||
pub(super) fn new(range: RangeInclusive<u8>, dst: S) -> Self {
|
||||
Self { start: *range.start(), end: *range.end(), dst }
|
||||
}
|
||||
|
||||
pub(super) fn from_inclusive_exclusive(range: Range<u16>, dst: S) -> Self {
|
||||
Self {
|
||||
start: range.start.try_into().unwrap(),
|
||||
end: (range.end - 1).try_into().unwrap(),
|
||||
dst,
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn contains(&self, idx: u16) -> bool {
|
||||
idx >= u16::from(self.start) && idx <= u16::from(self.end)
|
||||
}
|
||||
|
||||
pub(super) fn as_inclusive_exclusive(&self) -> (u16, u16) {
|
||||
(u16::from(self.start), u16::from(self.end) + 1)
|
||||
}
|
||||
|
||||
pub(super) fn as_byte(&self) -> Byte {
|
||||
Byte::new(self.start..=self.end)
|
||||
}
|
||||
|
||||
pub(super) fn map_state<SS>(self, f: impl FnOnce(S) -> SS) -> Run<SS> {
|
||||
let Run { start, end, dst } = self;
|
||||
Run { start, end, dst: f(dst) }
|
||||
}
|
||||
|
||||
/// Produces a new `Run` whose lower bound is the greater of
|
||||
/// `self`'s existing lower bound and `lower_bound`.
|
||||
pub(super) fn clamp_lower(self, lower_bound: u8) -> Self {
|
||||
let Run { start, end, dst } = self;
|
||||
Run { start: cmp::max(start, lower_bound), end, dst }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The set of outbound byte edges associated with a DFA node (not including
|
||||
/// reference edges).
|
||||
#[derive(Eq, PartialEq, Clone, Debug)]
|
||||
pub(super) struct EdgeSet<S = State> {
|
||||
// A sequence of runs stored in ascending order. Since the graph is a
|
||||
// DFA, these must be non-overlapping with one another.
|
||||
runs: SmallVec<[Run<S>; 1]>,
|
||||
// The edge labeled with the uninit byte, if any.
|
||||
//
|
||||
// FIXME(@joshlf): Make `State` a `NonZero` so that this is NPO'd.
|
||||
uninit: Option<S>,
|
||||
}
|
||||
|
||||
impl<S> EdgeSet<S> {
|
||||
pub(crate) fn new(byte: Byte, dst: S) -> Self {
|
||||
match byte.range() {
|
||||
Some(range) => Self { runs: smallvec![Run::new(range, dst)], uninit: None },
|
||||
None => Self { runs: SmallVec::new(), uninit: Some(dst) },
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn empty() -> Self {
|
||||
Self { runs: SmallVec::new(), uninit: None }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub(crate) fn from_edges(mut edges: Vec<(Byte, S)>) -> Self
|
||||
where
|
||||
S: Ord,
|
||||
{
|
||||
edges.sort();
|
||||
Self {
|
||||
runs: edges
|
||||
.into_iter()
|
||||
.map(|(byte, state)| Run::new(byte.range().unwrap(), state))
|
||||
.collect(),
|
||||
uninit: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn iter(&self) -> impl Iterator<Item = (Byte, S)>
|
||||
where
|
||||
S: Copy,
|
||||
{
|
||||
self.uninit
|
||||
.map(|dst| (Byte::uninit(), dst))
|
||||
.into_iter()
|
||||
.chain(self.runs.iter().map(|run| (run.as_byte(), run.dst)))
|
||||
}
|
||||
|
||||
pub(crate) fn states_from(
|
||||
&self,
|
||||
byte: RangeInclusive<u8>,
|
||||
) -> impl Iterator<Item = (Byte, S)>
|
||||
where
|
||||
S: Copy,
|
||||
{
|
||||
// FIXME(@joshlf): Optimize this. A manual scan over `self.runs` may
|
||||
// permit us to more efficiently discard runs which will not be
|
||||
// produced by this iterator.
|
||||
self.iter().filter(move |(o, _)| Byte::new(byte.clone()).transmutable_into(&o))
|
||||
}
|
||||
|
||||
pub(crate) fn get_uninit_edge_dst(&self) -> Option<S>
|
||||
where
|
||||
S: Copy,
|
||||
{
|
||||
self.uninit
|
||||
}
|
||||
|
||||
pub(crate) fn map_states<SS>(self, mut f: impl FnMut(S) -> SS) -> EdgeSet<SS> {
|
||||
EdgeSet {
|
||||
// NOTE: It appears as through `<Vec<_> as
|
||||
// IntoIterator>::IntoIter` and `std::iter::Map` both implement
|
||||
// `TrustedLen`, which in turn means that this `.collect()`
|
||||
// allocates the correct number of elements once up-front [1].
|
||||
//
|
||||
// [1] https://doc.rust-lang.org/1.85.0/src/alloc/vec/spec_from_iter_nested.rs.html#47
|
||||
runs: self.runs.into_iter().map(|run| run.map_state(&mut f)).collect(),
|
||||
uninit: self.uninit.map(f),
|
||||
}
|
||||
}
|
||||
|
||||
/// Unions two edge sets together.
|
||||
///
|
||||
/// If `u = a.union(b)`, then for each byte value, `u` will have an edge
|
||||
/// with that byte value and with the destination `(Some(_), None)`,
|
||||
/// `(None, Some(_))`, or `(Some(_), Some(_))` depending on whether `a`,
|
||||
/// `b`, or both have an edge with that byte value.
|
||||
///
|
||||
/// If neither `a` nor `b` have an edge with a particular byte value,
|
||||
/// then no edge with that value will be present in `u`.
|
||||
pub(crate) fn union(&self, other: &Self) -> EdgeSet<(Option<S>, Option<S>)>
|
||||
where
|
||||
S: Copy,
|
||||
{
|
||||
let uninit = match (self.uninit, other.uninit) {
|
||||
(None, None) => None,
|
||||
(s, o) => Some((s, o)),
|
||||
};
|
||||
|
||||
let mut runs = SmallVec::new();
|
||||
|
||||
// Iterate over `self.runs` and `other.runs` simultaneously,
|
||||
// advancing `idx` as we go. At each step, we advance `idx` as far
|
||||
// as we can without crossing a run boundary in either `self.runs`
|
||||
// or `other.runs`.
|
||||
|
||||
// INVARIANT: `idx < s[0].end && idx < o[0].end`.
|
||||
let (mut s, mut o) = (self.runs.as_slice(), other.runs.as_slice());
|
||||
let mut idx = 0u16;
|
||||
while let (Some((s_run, s_rest)), Some((o_run, o_rest))) =
|
||||
(s.split_first(), o.split_first())
|
||||
{
|
||||
let (s_start, s_end) = s_run.as_inclusive_exclusive();
|
||||
let (o_start, o_end) = o_run.as_inclusive_exclusive();
|
||||
|
||||
// Compute `end` as the end of the current run (which starts
|
||||
// with `idx`).
|
||||
let (end, dst) = match (s_run.contains(idx), o_run.contains(idx)) {
|
||||
// `idx` is in an existing run in both `s` and `o`, so `end`
|
||||
// is equal to the smallest of the two ends of those runs.
|
||||
(true, true) => (cmp::min(s_end, o_end), (Some(s_run.dst), Some(o_run.dst))),
|
||||
// `idx` is in an existing run in `s`, but not in any run in
|
||||
// `o`. `end` is either the end of the `s` run or the
|
||||
// beginning of the next `o` run, whichever comes first.
|
||||
(true, false) => (cmp::min(s_end, o_start), (Some(s_run.dst), None)),
|
||||
// The inverse of the previous case.
|
||||
(false, true) => (cmp::min(s_start, o_end), (None, Some(o_run.dst))),
|
||||
// `idx` is not in a run in either `s` or `o`, so advance it
|
||||
// to the beginning of the next run.
|
||||
(false, false) => {
|
||||
idx = cmp::min(s_start, o_start);
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
// FIXME(@joshlf): If this is contiguous with the previous run
|
||||
// and has the same `dst`, just merge it into that run rather
|
||||
// than adding a new one.
|
||||
runs.push(Run::from_inclusive_exclusive(idx..end, dst));
|
||||
idx = end;
|
||||
|
||||
if idx >= s_end {
|
||||
s = s_rest;
|
||||
}
|
||||
if idx >= o_end {
|
||||
o = o_rest;
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, either `s` or `o` have been exhausted, so the
|
||||
// remaining elements in the other slice are guaranteed to be
|
||||
// non-overlapping. We can add all remaining runs to `runs` with no
|
||||
// further processing.
|
||||
if let Ok(idx) = u8::try_from(idx) {
|
||||
let (slc, map) = if !s.is_empty() {
|
||||
let map: fn(_) -> _ = |st| (Some(st), None);
|
||||
(s, map)
|
||||
} else {
|
||||
let map: fn(_) -> _ = |st| (None, Some(st));
|
||||
(o, map)
|
||||
};
|
||||
runs.extend(slc.iter().map(|run| run.clamp_lower(idx).map_state(map)));
|
||||
}
|
||||
|
||||
EdgeSet { runs, uninit }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use std::fmt::{self, Debug};
|
||||
use std::hash::Hash;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
pub(crate) mod tree;
|
||||
pub(crate) use tree::Tree;
|
||||
@@ -10,18 +11,56 @@ pub(crate) use dfa::Dfa;
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct Uninhabited;
|
||||
|
||||
/// An instance of a byte is either initialized to a particular value, or uninitialized.
|
||||
#[derive(Hash, Eq, PartialEq, Clone, Copy)]
|
||||
pub(crate) enum Byte {
|
||||
Uninit,
|
||||
Init(u8),
|
||||
/// A range of byte values, or the uninit byte.
|
||||
#[derive(Hash, Eq, PartialEq, Ord, PartialOrd, Clone, Copy)]
|
||||
pub(crate) struct Byte {
|
||||
// An inclusive-inclusive range. We use this instead of `RangeInclusive`
|
||||
// because `RangeInclusive: !Copy`.
|
||||
//
|
||||
// `None` means uninit.
|
||||
//
|
||||
// FIXME(@joshlf): Optimize this representation. Some pairs of values (where
|
||||
// `lo > hi`) are illegal, and we could use these to represent `None`.
|
||||
range: Option<(u8, u8)>,
|
||||
}
|
||||
|
||||
impl Byte {
|
||||
fn new(range: RangeInclusive<u8>) -> Self {
|
||||
Self { range: Some((*range.start(), *range.end())) }
|
||||
}
|
||||
|
||||
fn from_val(val: u8) -> Self {
|
||||
Self { range: Some((val, val)) }
|
||||
}
|
||||
|
||||
pub(crate) fn uninit() -> Byte {
|
||||
Byte { range: None }
|
||||
}
|
||||
|
||||
/// Returns `None` if `self` is the uninit byte.
|
||||
pub(crate) fn range(&self) -> Option<RangeInclusive<u8>> {
|
||||
self.range.map(|(lo, hi)| lo..=hi)
|
||||
}
|
||||
|
||||
/// Are any of the values in `self` transmutable into `other`?
|
||||
///
|
||||
/// Note two special cases: An uninit byte is only transmutable into another
|
||||
/// uninit byte. Any byte is transmutable into an uninit byte.
|
||||
pub(crate) fn transmutable_into(&self, other: &Byte) -> bool {
|
||||
match (self.range, other.range) {
|
||||
(None, None) => true,
|
||||
(None, Some(_)) => false,
|
||||
(Some(_), None) => true,
|
||||
(Some((slo, shi)), Some((olo, ohi))) => slo <= ohi && olo <= shi,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Byte {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match &self {
|
||||
Self::Uninit => f.write_str("??u8"),
|
||||
Self::Init(b) => write!(f, "{b:#04x}u8"),
|
||||
match self.range {
|
||||
None => write!(f, "uninit"),
|
||||
Some((lo, hi)) => write!(f, "{lo}..={hi}"),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -29,7 +68,7 @@ impl fmt::Debug for Byte {
|
||||
#[cfg(test)]
|
||||
impl From<u8> for Byte {
|
||||
fn from(src: u8) -> Self {
|
||||
Self::Init(src)
|
||||
Self::from_val(src)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -62,6 +101,21 @@ impl Ref for ! {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
impl<const N: usize> Ref for [(); N] {
|
||||
fn min_align(&self) -> usize {
|
||||
N
|
||||
}
|
||||
|
||||
fn size(&self) -> usize {
|
||||
N
|
||||
}
|
||||
|
||||
fn is_mutable(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "rustc")]
|
||||
pub mod rustc {
|
||||
use std::fmt::{self, Write};
|
||||
|
||||
@@ -54,22 +54,22 @@ where
|
||||
|
||||
/// A `Tree` containing a single, uninitialized byte.
|
||||
pub(crate) fn uninit() -> Self {
|
||||
Self::Byte(Byte::Uninit)
|
||||
Self::Byte(Byte::uninit())
|
||||
}
|
||||
|
||||
/// A `Tree` representing the layout of `bool`.
|
||||
pub(crate) fn bool() -> Self {
|
||||
Self::from_bits(0x00).or(Self::from_bits(0x01))
|
||||
Self::Byte(Byte::new(0x00..=0x01))
|
||||
}
|
||||
|
||||
/// A `Tree` whose layout matches that of a `u8`.
|
||||
pub(crate) fn u8() -> Self {
|
||||
Self::Alt((0u8..=255).map(Self::from_bits).collect())
|
||||
Self::Byte(Byte::new(0x00..=0xFF))
|
||||
}
|
||||
|
||||
/// A `Tree` whose layout accepts exactly the given bit pattern.
|
||||
pub(crate) fn from_bits(bits: u8) -> Self {
|
||||
Self::Byte(Byte::Init(bits))
|
||||
Self::Byte(Byte::from_val(bits))
|
||||
}
|
||||
|
||||
/// A `Tree` whose layout is a number of the given width.
|
||||
|
||||
Reference in New Issue
Block a user