compute NLL loan scopes with liveness in -Zpolonius=next

This commit is contained in:
Rémy Rakic
2023-06-30 13:20:38 +00:00
parent a7f1f24823
commit 3dcff0051a
5 changed files with 339 additions and 28 deletions

View File

@@ -1,6 +1,7 @@
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph::WithSuccessors;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{
self, BasicBlock, Body, CallReturnPlaces, Location, Place, TerminatorEdges,
@@ -239,6 +240,162 @@ pub fn calculate_borrows_out_of_scope_at_location<'tcx>(
prec.borrows_out_of_scope_at_location
}
struct PoloniusOutOfScopePrecomputer<'a, 'tcx> {
visited: BitSet<mir::BasicBlock>,
visit_stack: Vec<mir::BasicBlock>,
body: &'a Body<'tcx>,
regioncx: &'a RegionInferenceContext<'tcx>,
loans_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}
impl<'a, 'tcx> PoloniusOutOfScopePrecomputer<'a, 'tcx> {
fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self {
Self {
visited: BitSet::new_empty(body.basic_blocks.len()),
visit_stack: vec![],
body,
regioncx,
loans_out_of_scope_at_location: FxIndexMap::default(),
}
}
}
impl<'tcx> PoloniusOutOfScopePrecomputer<'_, 'tcx> {
/// Loans are in scope while they are live: whether they are contained within any live region.
/// In the location-insensitive analysis, a loan will be contained in a region if the issuing
/// region can reach it in the subset graph. So this is a reachability problem.
fn precompute_loans_out_of_scope(
&mut self,
loan_idx: BorrowIndex,
issuing_region: RegionVid,
loan_issued_at: Location,
) {
let sccs = self.regioncx.constraint_sccs();
let issuing_region_scc = sccs.scc(issuing_region);
// We first handle the cases where the loan doesn't go out of scope, depending on the issuing
// region's successors.
for scc in sccs.depth_first_search(issuing_region_scc) {
// 1. Via member constraints
//
// The issuing region can flow into the choice regions, and they are either:
// - placeholders or free regions themselves,
// - or also transitively outlive a free region.
//
// That is to say, if there are member constraints here, the loan escapes the function
// and cannot go out of scope. We can early return.
if self.regioncx.scc_has_member_constraints(scc) {
return;
}
// 2. Via regions that are live at all points: placeholders and free regions.
//
// If the issuing region outlives such a region, its loan escapes the function and
// cannot go out of scope. We can early return.
if self.regioncx.scc_is_live_at_all_points(scc) {
return;
}
}
let first_block = loan_issued_at.block;
let first_bb_data = &self.body.basic_blocks[first_block];
// The first block we visit is the one where the loan is issued, starting from the statement
// where the loan is issued: at `loan_issued_at`.
let first_lo = loan_issued_at.statement_index;
let first_hi = first_bb_data.statements.len();
if let Some(kill_location) =
self.loan_kill_location(loan_idx, loan_issued_at, first_block, first_lo, first_hi)
{
debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
self.loans_out_of_scope_at_location.entry(kill_location).or_default().push(loan_idx);
// The loan dies within the first block, we're done and can early return.
return;
}
// The loan is not dead. Add successor BBs to the work list, if necessary.
for succ_bb in first_bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
// We may end up visiting `first_block` again. This is not an issue: we know at this point
// that the loan is not killed in the `first_lo..=first_hi` range, so checking the
// `0..first_lo` range and the `0..first_hi` range gives the same result.
while let Some(block) = self.visit_stack.pop() {
let bb_data = &self.body[block];
let num_stmts = bb_data.statements.len();
if let Some(kill_location) =
self.loan_kill_location(loan_idx, loan_issued_at, block, 0, num_stmts)
{
debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
self.loans_out_of_scope_at_location
.entry(kill_location)
.or_default()
.push(loan_idx);
// The loan dies within this block, so we don't need to visit its successors.
continue;
}
// Add successor BBs to the work list, if necessary.
for succ_bb in bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
}
self.visited.clear();
assert!(self.visit_stack.is_empty(), "visit stack should be empty");
}
/// Returns the lowest statement in `start..=end`, where the loan goes out of scope, if any.
/// This is the statement where the issuing region can't reach any of the regions that are live
/// at this point.
fn loan_kill_location(
&self,
loan_idx: BorrowIndex,
loan_issued_at: Location,
block: BasicBlock,
start: usize,
end: usize,
) -> Option<Location> {
for statement_index in start..=end {
let location = Location { block, statement_index };
// Check whether the issuing region can reach local regions that are live at this point:
// - a loan is always live at its issuing location because it can reach the issuing
// region, which is always live at this location.
if location == loan_issued_at {
continue;
}
// - the loan goes out of scope at `location` if it's not contained within any regions
// live at this point.
//
// FIXME: if the issuing region `i` can reach a live region `r` at point `p`, and `r` is
// live at point `q`, then it's guaranteed that `i` would reach `r` at point `q`.
// Reachability is location-insensitive, and we could take advantage of that, by jumping
// to a further point than just the next statement: we can jump to the furthest point
// within the block where `r` is live.
if self.regioncx.is_loan_live_at(loan_idx, location) {
continue;
}
// No live region is reachable from the issuing region: the loan is killed at this
// point.
return Some(location);
}
None
}
}
impl<'a, 'tcx> Borrows<'a, 'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
@@ -246,8 +403,33 @@ impl<'a, 'tcx> Borrows<'a, 'tcx> {
regioncx: &'a RegionInferenceContext<'tcx>,
borrow_set: &'a BorrowSet<'tcx>,
) -> Self {
let borrows_out_of_scope_at_location =
let mut borrows_out_of_scope_at_location =
calculate_borrows_out_of_scope_at_location(body, regioncx, borrow_set);
// The in-tree polonius analysis computes loans going out of scope using the set-of-loans
// model, and makes sure they're identical to the existing computation of the set-of-points
// model.
if tcx.sess.opts.unstable_opts.polonius.is_next_enabled() {
let mut polonius_prec = PoloniusOutOfScopePrecomputer::new(body, regioncx);
for (loan_idx, loan_data) in borrow_set.iter_enumerated() {
let issuing_region = loan_data.region;
let issued_location = loan_data.reserve_location;
polonius_prec.precompute_loans_out_of_scope(
loan_idx,
issuing_region,
issued_location,
);
}
assert_eq!(
borrows_out_of_scope_at_location, polonius_prec.loans_out_of_scope_at_location,
"the loans out of scope must be the same as the borrows out of scope"
);
borrows_out_of_scope_at_location = polonius_prec.loans_out_of_scope_at_location;
}
Borrows { tcx, body, borrow_set, borrows_out_of_scope_at_location }
}