Specialize PartialOrd<A> for [A] where A: Ord
This way we can call `cmp` instead of `partial_cmp` in the loop, removing some burden of optimizing `Option`s away from the compiler. PR #39538 introduced a regression where sorting slices suddenly became slower, since `slice1.lt(slice2)` was much slower than `slice1.cmp(slice2) == Less`. This problem is now fixed. To verify, I benchmarked this simple program: ```rust fn main() { let mut v = (0..2_000_000).map(|x| x * x * x * 18913515181).map(|x| vec![x, x ^ 3137831591]).collect::<Vec<_>>(); v.sort(); } ``` Before this PR, it would take 0.95 sec, and now it takes 0.58 sec. I also tried changing the `is_less` lambda to use `cmp` and `partial_cmp`. Now all three versions (`lt`, `cmp`, `partial_cmp`) are equally performant for sorting slices - all of them take 0.58 sec on the benchmark.
This commit is contained in:
@@ -2290,6 +2290,28 @@ impl<A> SlicePartialOrd<A> for [A]
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<A> SlicePartialOrd<A> for [A]
|
||||||
|
where A: Ord
|
||||||
|
{
|
||||||
|
default fn partial_compare(&self, other: &[A]) -> Option<Ordering> {
|
||||||
|
let l = cmp::min(self.len(), other.len());
|
||||||
|
|
||||||
|
// Slice to the loop iteration range to enable bound check
|
||||||
|
// elimination in the compiler
|
||||||
|
let lhs = &self[..l];
|
||||||
|
let rhs = &other[..l];
|
||||||
|
|
||||||
|
for i in 0..l {
|
||||||
|
match lhs[i].cmp(&rhs[i]) {
|
||||||
|
Ordering::Equal => (),
|
||||||
|
non_eq => return Some(non_eq),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
self.len().partial_cmp(&other.len())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl SlicePartialOrd<u8> for [u8] {
|
impl SlicePartialOrd<u8> for [u8] {
|
||||||
#[inline]
|
#[inline]
|
||||||
fn partial_compare(&self, other: &[u8]) -> Option<Ordering> {
|
fn partial_compare(&self, other: &[u8]) -> Option<Ordering> {
|
||||||
|
|||||||
Reference in New Issue
Block a user