Auto merge of #118842 - Nadrieril:librarify-further, r=compiler-errors

Make exhaustiveness usable outside of rustc

With this PR, `rustc_pattern_analysis` compiles on stable (with the `stable` feature)! `rust-analyzer` will be able to use it to provide match-related diagnostics and refactors.

Two questions:
- Should I name the feature `nightly` instead of `rustc` for consistency with other crates? `rustc` makes more sense imo.
- `typed-arena` is an optional dependency but tidy made me add it to the allow-list anyway. Can I avoid that somehow?

r? `@compiler-errors`
This commit is contained in:
bors
2023-12-19 17:15:04 +00:00
14 changed files with 721 additions and 474 deletions

View File

@@ -40,7 +40,7 @@
//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
//! each either disjoint with or covered by any given column constructor).
//!
//! We compute this in two steps: first [`crate::cx::MatchCheckCtxt::ctors_for_ty`] determines the
//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
//! column of constructors and splits the set into groups accordingly. The precise invariants of
//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
@@ -136,7 +136,7 @@
//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
//!
//! This is all handled by [`crate::cx::MatchCheckCtxt::ctors_for_ty`] and
//! This is all handled by [`TypeCx::ctors_for_ty`] and
//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
//!
//!
@@ -155,17 +155,15 @@ use std::iter::once;
use smallvec::SmallVec;
use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::RangeEnd;
use rustc_index::bit_set::{BitSet, GrowableBitSet};
use rustc_index::IndexVec;
use rustc_middle::mir::Const;
use rustc_target::abi::VariantIdx;
use self::Constructor::*;
use self::MaybeInfiniteInt::*;
use self::SliceKind::*;
use crate::usefulness::PatCtxt;
use crate::usefulness::PlaceCtxt;
use crate::TypeCx;
/// Whether we have seen a constructor in the column or not.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@@ -174,6 +172,21 @@ enum Presence {
Seen,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RangeEnd {
Included,
Excluded,
}
impl fmt::Display for RangeEnd {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
RangeEnd::Included => "..=",
RangeEnd::Excluded => "..",
})
}
}
/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
/// `255`. See `signed_bias` for details.
@@ -221,7 +234,7 @@ impl MaybeInfiniteInt {
match self {
Finite(n) => match n.checked_sub(1) {
Some(m) => Finite(m),
None => bug!(),
None => panic!("Called `MaybeInfiniteInt::minus_one` on 0"),
},
JustAfterMax => Finite(u128::MAX),
x => x,
@@ -234,7 +247,7 @@ impl MaybeInfiniteInt {
Some(m) => Finite(m),
None => JustAfterMax,
},
JustAfterMax => bug!(),
JustAfterMax => panic!("Called `MaybeInfiniteInt::plus_one` on u128::MAX+1"),
x => x,
}
}
@@ -253,7 +266,7 @@ pub struct IntRange {
impl IntRange {
/// Best effort; will not know that e.g. `255u8..` is a singleton.
pub(crate) fn is_singleton(&self) -> bool {
pub fn is_singleton(&self) -> bool {
// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
// to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
self.lo.plus_one() == self.hi
@@ -271,7 +284,7 @@ impl IntRange {
}
if lo >= hi {
// This should have been caught earlier by E0030.
bug!("malformed range pattern: {lo:?}..{hi:?}");
panic!("malformed range pattern: {lo:?}..{hi:?}");
}
IntRange { lo, hi }
}
@@ -432,7 +445,7 @@ impl Slice {
let kind = match (array_len, kind) {
// If the middle `..` has length 0, we effectively have a fixed-length pattern.
(Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
(Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => bug!(
(Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
"Slice pattern of length {} longer than its array length {len}",
prefix + suffix
),
@@ -532,7 +545,7 @@ impl Slice {
// therefore `Presence::Seen` in the column.
let mut min_var_len = usize::MAX;
// Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
let mut seen_fixed_lens = FxHashSet::default();
let mut seen_fixed_lens = GrowableBitSet::new_empty();
match &mut max_slice {
VarLen(max_prefix_len, max_suffix_len) => {
// A length larger than any fixed-length slice encountered.
@@ -600,7 +613,7 @@ impl Slice {
smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
let arity = kind.arity();
let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) {
let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
Presence::Seen
} else {
Presence::Unseen
@@ -630,12 +643,17 @@ impl OpaqueId {
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor<'tcx> {
/// The constructor for patterns that have a single constructor, like tuples, struct patterns,
/// and references. Fixed-length arrays are treated separately with `Slice`.
Single,
pub enum Constructor<Cx: TypeCx> {
/// Tuples and structs.
Struct,
/// Enum variants.
Variant(VariantIdx),
Variant(Cx::VariantIdx),
/// References
Ref,
/// Array and slice patterns.
Slice(Slice),
/// Union field accesses.
UnionField,
/// Booleans
Bool(bool),
/// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
@@ -644,9 +662,7 @@ pub enum Constructor<'tcx> {
F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
Str(Const<'tcx>),
/// Array and slice patterns.
Slice(Slice),
Str(Cx::StrLit),
/// Constants that must not be matched structurally. They are treated as black boxes for the
/// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
/// match exhaustive.
@@ -669,12 +685,12 @@ pub enum Constructor<'tcx> {
Missing,
}
impl<'tcx> Constructor<'tcx> {
impl<Cx: TypeCx> Constructor<Cx> {
pub(crate) fn is_non_exhaustive(&self) -> bool {
matches!(self, NonExhaustive)
}
pub(crate) fn as_variant(&self) -> Option<VariantIdx> {
pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
match self {
Variant(i) => Some(*i),
_ => None,
@@ -701,8 +717,8 @@ impl<'tcx> Constructor<'tcx> {
/// The number of fields for this constructor. This must be kept in sync with
/// `Fields::wildcards`.
pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
pcx.cx.ctor_arity(self, pcx.ty)
pub(crate) fn arity(&self, pcx: &PlaceCtxt<'_, '_, Cx>) -> usize {
pcx.ctor_arity(self)
}
/// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
@@ -710,20 +726,20 @@ impl<'tcx> Constructor<'tcx> {
/// this checks for inclusion.
// We inline because this has a single call site in `Matrix::specialize_constructor`.
#[inline]
pub(crate) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
pub(crate) fn is_covered_by<'p>(&self, pcx: &PlaceCtxt<'_, 'p, Cx>, other: &Self) -> bool {
match (self, other) {
(Wildcard, _) => {
span_bug!(
pcx.cx.scrut_span,
"Constructor splitting should not have returned `Wildcard`"
)
}
(Wildcard, _) => pcx
.mcx
.tycx
.bug(format_args!("Constructor splitting should not have returned `Wildcard`")),
// Wildcards cover anything
(_, Wildcard) => true,
// Only a wildcard pattern can match these special constructors.
(Missing { .. } | NonExhaustive | Hidden, _) => false,
(Single, Single) => true,
(Struct, Struct) => true,
(Ref, Ref) => true,
(UnionField, UnionField) => true,
(Variant(self_id), Variant(other_id)) => self_id == other_id,
(Bool(self_b), Bool(other_b)) => self_b == other_b,
@@ -756,12 +772,9 @@ impl<'tcx> Constructor<'tcx> {
(Opaque(self_id), Opaque(other_id)) => self_id == other_id,
(Opaque(..), _) | (_, Opaque(..)) => false,
_ => span_bug!(
pcx.cx.scrut_span,
"trying to compare incompatible constructors {:?} and {:?}",
self,
other
),
_ => pcx.mcx.tycx.bug(format_args!(
"trying to compare incompatible constructors {self:?} and {other:?}"
)),
}
}
}
@@ -785,13 +798,16 @@ pub enum VariantVisibility {
/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
/// `exhaustive_patterns` feature.
#[derive(Debug)]
pub enum ConstructorSet {
/// The type has a single constructor, e.g. `&T` or a struct. `empty` tracks whether the
/// constructor is empty.
Single { empty: bool },
pub enum ConstructorSet<Cx: TypeCx> {
/// The type is a tuple or struct. `empty` tracks whether the type is empty.
Struct { empty: bool },
/// This type has the following list of constructors. If `variants` is empty and
/// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
Variants { variants: IndexVec<VariantIdx, VariantVisibility>, non_exhaustive: bool },
Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
/// The type is `&T`.
Ref,
/// The type is a union.
Union,
/// Booleans.
Bool,
/// The type is spanned by integer values. The range or ranges give the set of allowed values.
@@ -830,25 +846,25 @@ pub enum ConstructorSet {
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
#[derive(Debug)]
pub(crate) struct SplitConstructorSet<'tcx> {
pub(crate) present: SmallVec<[Constructor<'tcx>; 1]>,
pub(crate) missing: Vec<Constructor<'tcx>>,
pub(crate) missing_empty: Vec<Constructor<'tcx>>,
pub(crate) struct SplitConstructorSet<Cx: TypeCx> {
pub(crate) present: SmallVec<[Constructor<Cx>; 1]>,
pub(crate) missing: Vec<Constructor<Cx>>,
pub(crate) missing_empty: Vec<Constructor<Cx>>,
}
impl ConstructorSet {
impl<Cx: TypeCx> ConstructorSet<Cx> {
/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
/// and its invariants.
#[instrument(level = "debug", skip(self, pcx, ctors), ret)]
pub(crate) fn split<'a, 'tcx>(
pub(crate) fn split<'a>(
&self,
pcx: &PatCtxt<'_, '_, 'tcx>,
ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
) -> SplitConstructorSet<'tcx>
pcx: &PlaceCtxt<'_, '_, Cx>,
ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
) -> SplitConstructorSet<Cx>
where
'tcx: 'a,
Cx: 'a,
{
let mut present: SmallVec<[_; 1]> = SmallVec::new();
// Empty constructors found missing.
@@ -866,22 +882,39 @@ impl ConstructorSet {
}
match self {
ConstructorSet::Single { empty } => {
ConstructorSet::Struct { empty } => {
if !seen.is_empty() {
present.push(Single);
present.push(Struct);
} else if *empty {
missing_empty.push(Single);
missing_empty.push(Struct);
} else {
missing.push(Single);
missing.push(Struct);
}
}
ConstructorSet::Ref => {
if !seen.is_empty() {
present.push(Ref);
} else {
missing.push(Ref);
}
}
ConstructorSet::Union => {
if !seen.is_empty() {
present.push(UnionField);
} else {
missing.push(UnionField);
}
}
ConstructorSet::Variants { variants, non_exhaustive } => {
let seen_set: FxHashSet<_> = seen.iter().map(|c| c.as_variant().unwrap()).collect();
let mut seen_set: BitSet<_> = BitSet::new_empty(variants.len());
for idx in seen.iter().map(|c| c.as_variant().unwrap()) {
seen_set.insert(idx);
}
let mut skipped_a_hidden_variant = false;
for (idx, visibility) in variants.iter_enumerated() {
let ctor = Variant(idx);
if seen_set.contains(&idx) {
if seen_set.contains(idx) {
present.push(ctor);
} else {
// We only put visible variants directly into `missing`.
@@ -975,8 +1008,8 @@ impl ConstructorSet {
// We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
// In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
// types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
if !pcx.cx.tcx.features().exhaustive_patterns
&& !(pcx.is_top_level && matches!(self, Self::NoConstructors))
if !pcx.mcx.tycx.is_exhaustive_patterns_feature_on()
&& !(pcx.is_scrutinee && matches!(self, Self::NoConstructors))
{
// Treat all missing constructors as nonempty.
// This clears `missing_empty`.