Rollup merge of #143410 - scottmcm:redo-transmute-again, r=RalfJung,workingjubilee

Block SIMD in transmute_immediate; delete `OperandValueKind`

Vectors have been causing me problems for years in this code, for example https://github.com/rust-lang/rust/pull/110021#discussion_r1160975086 and https://github.com/rust-lang/rust/pull/143194

See conversation in <https://rust-lang.zulipchat.com/#narrow/channel/131828-t-compiler/topic/Is.20transmuting.20a.20.60T.60.20to.20.60Tx1.60.20.28one-element.20SIMD.20vector.29.20UB.3F/near/526262799>.

By blocking SIMD in `transmute_immediate` it can be simplified to just take the `Scalar`s involved -- the backend types can be gotten from those `Scalar`s, rather than needing to be passed.  And there's an assert added to ICE it if it does get hit.

Accordingly, this changes `rvalue_creates_operand` to not send SIMD transmutes through the operand path, but to always go through memory instead, like they did back before rust-lang/rust#108442.

And thanks to those changes, I could also remove the `OperandValueKind` type that I added back then which `@RalfJung` rightly considers pretty sketchy.

cc `@folkertdev` `@workingjubilee` from the zulip conversation too
This commit is contained in:
Jubilee
2025-07-04 23:26:24 -07:00
committed by GitHub
7 changed files with 138 additions and 214 deletions

View File

@@ -13,7 +13,7 @@ use rustc_session::config::OptLevel;
use tracing::{debug, instrument};
use super::place::{PlaceRef, PlaceValue};
use super::rvalue::transmute_immediate;
use super::rvalue::transmute_scalar;
use super::{FunctionCx, LocalRef};
use crate::common::IntPredicate;
use crate::traits::*;
@@ -346,14 +346,16 @@ impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
let val = if field.is_zst() {
OperandValue::ZeroSized
} else if let BackendRepr::SimdVector { .. } = self.layout.backend_repr {
// codegen_transmute_operand doesn't support SIMD, but since the previous
// check handled ZSTs, the only possible field access into something SIMD
// is to the `non_1zst_field` that's the same SIMD. (Other things, even
// just padding, would change the wrapper's representation type.)
assert_eq!(field.size, self.layout.size);
self.val
} else if field.size == self.layout.size {
assert_eq!(offset.bytes(), 0);
fx.codegen_transmute_operand(bx, *self, field).unwrap_or_else(|| {
bug!(
"Expected `codegen_transmute_operand` to handle equal-size \
field {i:?} projection from {self:?} to {field:?}"
)
})
fx.codegen_transmute_operand(bx, *self, field)
} else {
let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
// Extract a scalar component from a pair.
@@ -613,10 +615,8 @@ impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, Result<V, abi::Scalar>> {
};
let mut update = |tgt: &mut Result<V, abi::Scalar>, src, from_scalar| {
let from_bty = bx.cx().type_from_scalar(from_scalar);
let to_scalar = tgt.unwrap_err();
let to_bty = bx.cx().type_from_scalar(to_scalar);
let imm = transmute_immediate(bx, src, from_scalar, from_bty, to_scalar, to_bty);
let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
*tgt = Ok(imm);
};

View File

@@ -1,10 +1,8 @@
use std::assert_matches::assert_matches;
use rustc_abi::{self as abi, FIRST_VARIANT};
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_middle::{bug, mir, span_bug};
use rustc_middle::{bug, mir};
use rustc_session::config::OptLevel;
use rustc_span::{DUMMY_SP, Span};
use tracing::{debug, instrument};
@@ -12,7 +10,7 @@ use tracing::{debug, instrument};
use super::operand::{OperandRef, OperandValue};
use super::place::{PlaceRef, codegen_tag_value};
use super::{FunctionCx, LocalRef};
use crate::common::IntPredicate;
use crate::common::{IntPredicate, TypeKind};
use crate::traits::*;
use crate::{MemFlags, base};
@@ -190,6 +188,10 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
}
}
/// Transmutes the `src` value to the destination type by writing it to `dst`.
///
/// See also [`Self::codegen_transmute_operand`] for cases that can be done
/// without needing a pre-allocated place for the destination.
fn codegen_transmute(
&mut self,
bx: &mut Bx,
@@ -200,37 +202,36 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
assert!(src.layout.is_sized());
assert!(dst.layout.is_sized());
if let Some(val) = self.codegen_transmute_operand(bx, src, dst.layout) {
val.store(bx, dst);
return;
}
match src.val {
OperandValue::Ref(..) | OperandValue::ZeroSized => {
span_bug!(
self.mir.span,
"Operand path should have handled transmute \
from {src:?} to place {dst:?}"
);
}
OperandValue::Immediate(..) | OperandValue::Pair(..) => {
// When we have immediate(s), the alignment of the source is irrelevant,
// so we can store them using the destination's alignment.
src.val.store(bx, dst.val.with_type(src.layout));
}
if src.layout.size != dst.layout.size
|| src.layout.is_uninhabited()
|| dst.layout.is_uninhabited()
{
// These cases are all UB to actually hit, so don't emit code for them.
// (The size mismatches are reachable via `transmute_unchecked`.)
// We can't use unreachable because that's a terminator, and we
// need something that can be in the middle of a basic block.
bx.assume(bx.cx().const_bool(false))
} else {
// Since in this path we have a place anyway, we can store or copy to it,
// making sure we use the destination place's alignment even if the
// source would normally have a higher one.
src.val.store(bx, dst.val.with_type(src.layout));
}
}
/// Attempts to transmute an `OperandValue` to another `OperandValue`.
/// Transmutes an `OperandValue` to another `OperandValue`.
///
/// Returns `None` for cases that can't work in that framework, such as for
/// `Immediate`->`Ref` that needs an `alloc` to get the location.
/// This is supported only for cases where [`Self::rvalue_creates_operand`]
/// returns `true`, and will ICE otherwise. (In particular, anything that
/// would need to `alloca` in order to return a `PlaceValue` will ICE,
/// expecting those to go via [`Self::codegen_transmute`] instead where
/// the destination place is already allocated.)
pub(crate) fn codegen_transmute_operand(
&mut self,
bx: &mut Bx,
operand: OperandRef<'tcx, Bx::Value>,
cast: TyAndLayout<'tcx>,
) -> Option<OperandValue<Bx::Value>> {
) -> OperandValue<Bx::Value> {
// Check for transmutes that are always UB.
if operand.layout.size != cast.size
|| operand.layout.is_uninhabited()
@@ -244,71 +245,34 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
// Because this transmute is UB, return something easy to generate,
// since it's fine that later uses of the value are probably UB.
return Some(OperandValue::poison(bx, cast));
return OperandValue::poison(bx, cast);
}
let operand_kind = self.value_kind(operand.layout);
let cast_kind = self.value_kind(cast);
match operand.val {
OperandValue::Ref(source_place_val) => {
match (operand.val, operand.layout.backend_repr, cast.backend_repr) {
_ if cast.is_zst() => OperandValue::ZeroSized,
(_, _, abi::BackendRepr::Memory { .. }) => {
bug!("Cannot `codegen_transmute_operand` to non-ZST memory-ABI output {cast:?}");
}
(OperandValue::Ref(source_place_val), abi::BackendRepr::Memory { .. }, _) => {
assert_eq!(source_place_val.llextra, None);
assert_matches!(operand_kind, OperandValueKind::Ref);
// The existing alignment is part of `source_place_val`,
// so that alignment will be used, not `cast`'s.
Some(bx.load_operand(source_place_val.with_type(cast)).val)
}
OperandValue::ZeroSized => {
let OperandValueKind::ZeroSized = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::ZeroSized = cast_kind {
Some(OperandValue::ZeroSized)
} else {
None
}
}
OperandValue::Immediate(imm) => {
let OperandValueKind::Immediate(from_scalar) = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::Immediate(to_scalar) = cast_kind
&& from_scalar.size(self.cx) == to_scalar.size(self.cx)
{
let from_backend_ty = bx.backend_type(operand.layout);
let to_backend_ty = bx.backend_type(cast);
Some(OperandValue::Immediate(transmute_immediate(
bx,
imm,
from_scalar,
from_backend_ty,
to_scalar,
to_backend_ty,
)))
} else {
None
}
}
OperandValue::Pair(imm_a, imm_b) => {
let OperandValueKind::Pair(in_a, in_b) = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
};
if let OperandValueKind::Pair(out_a, out_b) = cast_kind
&& in_a.size(self.cx) == out_a.size(self.cx)
&& in_b.size(self.cx) == out_b.size(self.cx)
{
let in_a_ibty = bx.scalar_pair_element_backend_type(operand.layout, 0, false);
let in_b_ibty = bx.scalar_pair_element_backend_type(operand.layout, 1, false);
let out_a_ibty = bx.scalar_pair_element_backend_type(cast, 0, false);
let out_b_ibty = bx.scalar_pair_element_backend_type(cast, 1, false);
Some(OperandValue::Pair(
transmute_immediate(bx, imm_a, in_a, in_a_ibty, out_a, out_a_ibty),
transmute_immediate(bx, imm_b, in_b, in_b_ibty, out_b, out_b_ibty),
))
} else {
None
}
bx.load_operand(source_place_val.with_type(cast)).val
}
(
OperandValue::Immediate(imm),
abi::BackendRepr::Scalar(from_scalar),
abi::BackendRepr::Scalar(to_scalar),
) => OperandValue::Immediate(transmute_scalar(bx, imm, from_scalar, to_scalar)),
(
OperandValue::Pair(imm_a, imm_b),
abi::BackendRepr::ScalarPair(in_a, in_b),
abi::BackendRepr::ScalarPair(out_a, out_b),
) => OperandValue::Pair(
transmute_scalar(bx, imm_a, in_a, out_a),
transmute_scalar(bx, imm_b, in_b, out_b),
),
_ => bug!("Cannot `codegen_transmute_operand` {operand:?} to {cast:?}"),
}
}
@@ -479,9 +443,8 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
// path as the other integer-to-X casts.
| mir::CastKind::PointerWithExposedProvenance => {
let imm = operand.immediate();
let operand_kind = self.value_kind(operand.layout);
let OperandValueKind::Immediate(from_scalar) = operand_kind else {
bug!("Found {operand_kind:?} for operand {operand:?}");
let abi::BackendRepr::Scalar(from_scalar) = operand.layout.backend_repr else {
bug!("Found non-scalar for operand {operand:?}");
};
let from_backend_ty = bx.cx().immediate_backend_type(operand.layout);
@@ -491,9 +454,8 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
let val = OperandValue::Immediate(bx.cx().const_poison(to_backend_ty));
return OperandRef { val, layout: cast };
}
let cast_kind = self.value_kind(cast);
let OperandValueKind::Immediate(to_scalar) = cast_kind else {
bug!("Found {cast_kind:?} for operand {cast:?}");
let abi::BackendRepr::Scalar(to_scalar) = cast.layout.backend_repr else {
bug!("Found non-scalar for cast {cast:?}");
};
self.cast_immediate(bx, imm, from_scalar, from_backend_ty, to_scalar, to_backend_ty)
@@ -503,9 +465,7 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
})
}
mir::CastKind::Transmute => {
self.codegen_transmute_operand(bx, operand, cast).unwrap_or_else(|| {
bug!("Unsupported transmute-as-operand of {operand:?} to {cast:?}");
})
self.codegen_transmute_operand(bx, operand, cast)
}
};
OperandRef { val, layout: cast }
@@ -1011,37 +971,46 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
OperandValue::Pair(val, of)
}
/// Returns `true` if the `rvalue` can be computed into an [`OperandRef`],
/// rather than needing a full `PlaceRef` for the assignment destination.
///
/// This is used by the [`super::analyze`] code to decide which MIR locals
/// can stay as SSA values (as opposed to generating `alloca` slots for them).
/// As such, some paths here return `true` even where the specific rvalue
/// will not actually take the operand path because the result type is such
/// that it always gets an `alloca`, but where it's not worth re-checking the
/// layout in this code when the right thing will happen anyway.
pub(crate) fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>, span: Span) -> bool {
match *rvalue {
mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, cast_ty) => {
let operand_ty = operand.ty(self.mir, self.cx.tcx());
let cast_layout = self.cx.layout_of(self.monomorphize(cast_ty));
let operand_layout = self.cx.layout_of(self.monomorphize(operand_ty));
match (operand_layout.backend_repr, cast_layout.backend_repr) {
// When the output will be in memory anyway, just use its place
// (instead of the operand path) unless it's the trivial ZST case.
(_, abi::BackendRepr::Memory { .. }) => cast_layout.is_zst(),
match (self.value_kind(operand_layout), self.value_kind(cast_layout)) {
// Can always load from a pointer as needed
(OperandValueKind::Ref, _) => true,
// ZST-to-ZST is the easiest thing ever
(OperandValueKind::ZeroSized, OperandValueKind::ZeroSized) => true,
// But if only one of them is a ZST the sizes can't match
(OperandValueKind::ZeroSized, _) | (_, OperandValueKind::ZeroSized) => false,
// Need to generate an `alloc` to get a pointer from an immediate
(OperandValueKind::Immediate(..) | OperandValueKind::Pair(..), OperandValueKind::Ref) => false,
// Otherwise (for a non-memory output) if the input is memory
// then we can just read the value from the place.
(abi::BackendRepr::Memory { .. }, _) => true,
// When we have scalar immediates, we can only convert things
// where the sizes match, to avoid endianness questions.
(OperandValueKind::Immediate(a), OperandValueKind::Immediate(b)) =>
(abi::BackendRepr::Scalar(a), abi::BackendRepr::Scalar(b)) =>
a.size(self.cx) == b.size(self.cx),
(OperandValueKind::Pair(a0, a1), OperandValueKind::Pair(b0, b1)) =>
(abi::BackendRepr::ScalarPair(a0, a1), abi::BackendRepr::ScalarPair(b0, b1)) =>
a0.size(self.cx) == b0.size(self.cx) && a1.size(self.cx) == b1.size(self.cx),
// Send mixings between scalars and pairs through the memory route
// FIXME: Maybe this could use insertvalue/extractvalue instead?
(OperandValueKind::Immediate(..), OperandValueKind::Pair(..)) |
(OperandValueKind::Pair(..), OperandValueKind::Immediate(..)) => false,
// Mixing Scalars and ScalarPairs can get quite complicated when
// padding and undef get involved, so leave that to the memory path.
(abi::BackendRepr::Scalar(_), abi::BackendRepr::ScalarPair(_, _)) |
(abi::BackendRepr::ScalarPair(_, _), abi::BackendRepr::Scalar(_)) => false,
// SIMD vectors aren't worth the trouble of dealing with complex
// cases like from vectors of f32 to vectors of pointers or
// from fat pointers to vectors of u16. (See #143194 #110021 ...)
(abi::BackendRepr::SimdVector { .. }, _) | (_, abi::BackendRepr::SimdVector { .. }) => false,
}
}
mir::Rvalue::Ref(..) |
@@ -1071,68 +1040,43 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
// (*) this is only true if the type is suitable
}
/// Gets which variant of [`OperandValue`] is expected for a particular type.
fn value_kind(&self, layout: TyAndLayout<'tcx>) -> OperandValueKind {
if layout.is_zst() {
OperandValueKind::ZeroSized
} else if self.cx.is_backend_immediate(layout) {
assert!(!self.cx.is_backend_scalar_pair(layout));
OperandValueKind::Immediate(match layout.backend_repr {
abi::BackendRepr::Scalar(s) => s,
abi::BackendRepr::SimdVector { element, .. } => element,
x => span_bug!(self.mir.span, "Couldn't translate {x:?} as backend immediate"),
})
} else if self.cx.is_backend_scalar_pair(layout) {
let abi::BackendRepr::ScalarPair(s1, s2) = layout.backend_repr else {
span_bug!(
self.mir.span,
"Couldn't translate {:?} as backend scalar pair",
layout.backend_repr,
);
};
OperandValueKind::Pair(s1, s2)
} else {
OperandValueKind::Ref
}
}
}
/// The variants of this match [`OperandValue`], giving details about the
/// backend values that will be held in that other type.
#[derive(Debug, Copy, Clone)]
enum OperandValueKind {
Ref,
Immediate(abi::Scalar),
Pair(abi::Scalar, abi::Scalar),
ZeroSized,
}
/// Transmutes one of the immediates from an [`OperandValue::Immediate`]
/// or an [`OperandValue::Pair`] to an immediate of the target type.
/// Transmutes a single scalar value `imm` from `from_scalar` to `to_scalar`.
///
/// `to_backend_ty` must be the *non*-immediate backend type (so it will be
/// `i8`, not `i1`, for `bool`-like types.)
pub(super) fn transmute_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
/// This is expected to be in *immediate* form, as seen in [`OperandValue::Immediate`]
/// or [`OperandValue::Pair`] (so `i1` for bools, not `i8`, for example).
///
/// ICEs if the passed-in `imm` is not a value of the expected type for
/// `from_scalar`, such as if it's a vector or a pair.
pub(super) fn transmute_scalar<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
mut imm: Bx::Value,
from_scalar: abi::Scalar,
from_backend_ty: Bx::Type,
to_scalar: abi::Scalar,
to_backend_ty: Bx::Type,
) -> Bx::Value {
assert_eq!(from_scalar.size(bx.cx()), to_scalar.size(bx.cx()));
let imm_ty = bx.cx().val_ty(imm);
assert_ne!(
bx.cx().type_kind(imm_ty),
TypeKind::Vector,
"Vector type {imm_ty:?} not allowed in transmute_scalar {from_scalar:?} -> {to_scalar:?}"
);
// While optimizations will remove no-op transmutes, they might still be
// there in debug or things that aren't no-op in MIR because they change
// the Rust type but not the underlying layout/niche.
if from_scalar == to_scalar && from_backend_ty == to_backend_ty {
if from_scalar == to_scalar {
return imm;
}
use abi::Primitive::*;
imm = bx.from_immediate(imm);
let from_backend_ty = bx.cx().type_from_scalar(from_scalar);
debug_assert_eq!(bx.cx().val_ty(imm), from_backend_ty);
let to_backend_ty = bx.cx().type_from_scalar(to_scalar);
// If we have a scalar, we must already know its range. Either
//
// 1) It's a parameter with `range` parameter metadata,
@@ -1163,6 +1107,8 @@ pub(super) fn transmute_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
}
};
debug_assert_eq!(bx.cx().val_ty(imm), to_backend_ty);
// This `assume` remains important for cases like (a conceptual)
// transmute::<u32, NonZeroU32>(x) == 0
// since it's never passed to something with parameter metadata (especially