move structural_traits into assembly

This commit is contained in:
lcnr
2023-03-29 15:44:23 +02:00
parent 2b0f5721c1
commit 2186847f28
4 changed files with 9 additions and 11 deletions

View File

@@ -0,0 +1,587 @@
//! Code shared by trait and projection goals for candidate assembly.
use super::search_graph::OverflowHandler;
use super::{EvalCtxt, SolverMode};
use crate::solve::CanonicalResponseExt;
use crate::traits::coherence;
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir::def_id::DefId;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::elaborate;
use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, MaybeCause, QueryResult};
use rustc_middle::ty::fast_reject::TreatProjections;
use rustc_middle::ty::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use std::fmt::Debug;
pub(super) mod structural_traits;
/// A candidate is a possible way to prove a goal.
///
/// It consists of both the `source`, which describes how that goal would be proven,
/// and the `result` when using the given `source`.
#[derive(Debug, Clone)]
pub(super) struct Candidate<'tcx> {
pub(super) source: CandidateSource,
pub(super) result: CanonicalResponse<'tcx>,
}
/// Possible ways the given goal can be proven.
#[derive(Debug, Clone, Copy)]
pub(super) enum CandidateSource {
/// A user written impl.
///
/// ## Examples
///
/// ```rust
/// fn main() {
/// let x: Vec<u32> = Vec::new();
/// // This uses the impl from the standard library to prove `Vec<T>: Clone`.
/// let y = x.clone();
/// }
/// ```
Impl(DefId),
/// A builtin impl generated by the compiler. When adding a new special
/// trait, try to use actual impls whenever possible. Builtin impls should
/// only be used in cases where the impl cannot be manually be written.
///
/// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
/// For a list of all traits with builtin impls, check out the
/// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not
BuiltinImpl,
/// An assumption from the environment.
///
/// More precicely we've used the `n-th` assumption in the `param_env`.
///
/// ## Examples
///
/// ```rust
/// fn is_clone<T: Clone>(x: T) -> (T, T) {
/// // This uses the assumption `T: Clone` from the `where`-bounds
/// // to prove `T: Clone`.
/// (x.clone(), x)
/// }
/// ```
ParamEnv(usize),
/// If the self type is an alias type, e.g. an opaque type or a projection,
/// we know the bounds on that alias to hold even without knowing its concrete
/// underlying type.
///
/// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
/// the self type.
///
/// ## Examples
///
/// ```rust
/// trait Trait {
/// type Assoc: Clone;
/// }
///
/// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
/// // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
/// // in the trait definition.
/// let _y = x.clone();
/// }
/// ```
AliasBound,
}
/// Methods used to assemble candidates for either trait or projection goals.
pub(super) trait GoalKind<'tcx>: TypeFoldable<TyCtxt<'tcx>> + Copy + Eq {
fn self_ty(self) -> Ty<'tcx>;
fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>;
fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self;
fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId;
// Consider a clause, which consists of a "assumption" and some "requirements",
// to satisfy a goal. If the requirements hold, then attempt to satisfy our
// goal by equating it with the assumption.
fn consider_implied_clause(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
requirements: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>,
) -> QueryResult<'tcx>;
// Consider a clause specifically for a `dyn Trait` self type. This requires
// additionally checking all of the supertraits and object bounds to hold,
// since they're not implied by the well-formedness of the object type.
fn consider_object_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
) -> QueryResult<'tcx>;
fn consider_impl_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
impl_def_id: DefId,
) -> QueryResult<'tcx>;
// A type implements an `auto trait` if its components do as well. These components
// are given by built-in rules from [`instantiate_constituent_tys_for_auto_trait`].
fn consider_auto_trait_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A trait alias holds if the RHS traits and `where` clauses hold.
fn consider_trait_alias_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A type is `Copy` or `Clone` if its components are `Sized`. These components
// are given by built-in rules from [`instantiate_constituent_tys_for_sized_trait`].
fn consider_builtin_sized_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. These
// components are given by built-in rules from [`instantiate_constituent_tys_for_copy_clone_trait`].
fn consider_builtin_copy_clone_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A type is `PointerLike` if we can compute its layout, and that layout
// matches the layout of `usize`.
fn consider_builtin_pointer_like_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A type is a `FnPtr` if it is of `FnPtr` type.
fn consider_builtin_fn_ptr_trait_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn<A>`
// family of traits where `A` is given by the signature of the type.
fn consider_builtin_fn_trait_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
kind: ty::ClosureKind,
) -> QueryResult<'tcx>;
// `Tuple` is implemented if the `Self` type is a tuple.
fn consider_builtin_tuple_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// `Pointee` is always implemented.
//
// See the projection implementation for the `Metadata` types for all of
// the built-in types. For structs, the metadata type is given by the struct
// tail.
fn consider_builtin_pointee_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A generator (that comes from an `async` desugaring) is known to implement
// `Future<Output = O>`, where `O` is given by the generator's return type
// that was computed during type-checking.
fn consider_builtin_future_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// A generator (that doesn't come from an `async` desugaring) is known to
// implement `Generator<R, Yield = Y, Return = O>`, given the resume, yield,
// and return types of the generator computed during type-checking.
fn consider_builtin_generator_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// The most common forms of unsizing are array to slice, and concrete (Sized)
// type into a `dyn Trait`. ADTs and Tuples can also have their final field
// unsized if it's generic.
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// `dyn Trait1` can be unsized to `dyn Trait2` if they are the same trait, or
// if `Trait2` is a (transitive) supertrait of `Trait2`.
fn consider_builtin_dyn_upcast_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>>;
fn consider_builtin_discriminant_kind_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
fn consider_builtin_destruct_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
pub(super) fn assemble_and_evaluate_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
) -> Vec<Candidate<'tcx>> {
debug_assert_eq!(goal, self.resolve_vars_if_possible(goal));
// HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule,
// object bound, alias bound, etc. We are unable to determine this until we can at
// least structually resolve the type one layer.
if goal.predicate.self_ty().is_ty_var() {
return vec![Candidate {
source: CandidateSource::BuiltinImpl,
result: self
.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
.unwrap(),
}];
}
let mut candidates = Vec::new();
self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates);
self.assemble_impl_candidates(goal, &mut candidates);
self.assemble_builtin_impl_candidates(goal, &mut candidates);
self.assemble_param_env_candidates(goal, &mut candidates);
self.assemble_alias_bound_candidates(goal, &mut candidates);
self.assemble_object_bound_candidates(goal, &mut candidates);
self.assemble_coherence_unknowable_candidates(goal, &mut candidates);
candidates
}
/// If the self type of a goal is a projection, computing the relevant candidates is difficult.
///
/// To deal with this, we first try to normalize the self type and add the candidates for the normalized
/// self type to the list of candidates in case that succeeds. We also have to consider candidates with the
/// projection as a self type as well
#[instrument(level = "debug", skip_all)]
fn assemble_candidates_after_normalizing_self_ty<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let tcx = self.tcx();
// FIXME: We also have to normalize opaque types, not sure where to best fit that in.
let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
return
};
let normalized_self_candidates: Result<_, NoSolution> = self.probe(|ecx| {
ecx.with_incremented_depth(
|ecx| {
let result = ecx.evaluate_added_goals_and_make_canonical_response(
Certainty::Maybe(MaybeCause::Overflow),
)?;
Ok(vec![Candidate { source: CandidateSource::BuiltinImpl, result }])
},
|ecx| {
let normalized_ty = ecx.next_ty_infer();
let normalizes_to_goal = goal.with(
tcx,
ty::Binder::dummy(ty::ProjectionPredicate {
projection_ty,
term: normalized_ty.into(),
}),
);
ecx.add_goal(normalizes_to_goal);
let _ = ecx.try_evaluate_added_goals()?;
let normalized_ty = ecx.resolve_vars_if_possible(normalized_ty);
// NOTE: Alternatively we could call `evaluate_goal` here and only
// have a `Normalized` candidate. This doesn't work as long as we
// use `CandidateSource` in winnowing.
let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty));
Ok(ecx.assemble_and_evaluate_candidates(goal))
},
)
});
if let Ok(normalized_self_candidates) = normalized_self_candidates {
candidates.extend(normalized_self_candidates);
}
}
#[instrument(level = "debug", skip_all)]
fn assemble_impl_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let tcx = self.tcx();
tcx.for_each_relevant_impl_treating_projections(
goal.predicate.trait_def_id(tcx),
goal.predicate.self_ty(),
TreatProjections::NextSolverLookup,
|impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) {
Ok(result) => candidates
.push(Candidate { source: CandidateSource::Impl(impl_def_id), result }),
Err(NoSolution) => (),
},
);
}
#[instrument(level = "debug", skip_all)]
fn assemble_builtin_impl_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let lang_items = self.tcx().lang_items();
let trait_def_id = goal.predicate.trait_def_id(self.tcx());
let result = if self.tcx().trait_is_auto(trait_def_id) {
G::consider_auto_trait_candidate(self, goal)
} else if self.tcx().trait_is_alias(trait_def_id) {
G::consider_trait_alias_candidate(self, goal)
} else if lang_items.sized_trait() == Some(trait_def_id) {
G::consider_builtin_sized_candidate(self, goal)
} else if lang_items.copy_trait() == Some(trait_def_id)
|| lang_items.clone_trait() == Some(trait_def_id)
{
G::consider_builtin_copy_clone_candidate(self, goal)
} else if lang_items.pointer_like() == Some(trait_def_id) {
G::consider_builtin_pointer_like_candidate(self, goal)
} else if lang_items.fn_ptr_trait() == Some(trait_def_id) {
G::consider_builtin_fn_ptr_trait_candidate(self, goal)
} else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) {
G::consider_builtin_fn_trait_candidates(self, goal, kind)
} else if lang_items.tuple_trait() == Some(trait_def_id) {
G::consider_builtin_tuple_candidate(self, goal)
} else if lang_items.pointee_trait() == Some(trait_def_id) {
G::consider_builtin_pointee_candidate(self, goal)
} else if lang_items.future_trait() == Some(trait_def_id) {
G::consider_builtin_future_candidate(self, goal)
} else if lang_items.gen_trait() == Some(trait_def_id) {
G::consider_builtin_generator_candidate(self, goal)
} else if lang_items.unsize_trait() == Some(trait_def_id) {
G::consider_builtin_unsize_candidate(self, goal)
} else if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
G::consider_builtin_discriminant_kind_candidate(self, goal)
} else if lang_items.destruct_trait() == Some(trait_def_id) {
G::consider_builtin_destruct_candidate(self, goal)
} else {
Err(NoSolution)
};
match result {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
}
Err(NoSolution) => (),
}
// There may be multiple unsize candidates for a trait with several supertraits:
// `trait Foo: Bar<A> + Bar<B>` and `dyn Foo: Unsize<dyn Bar<_>>`
if lang_items.unsize_trait() == Some(trait_def_id) {
for result in G::consider_builtin_dyn_upcast_candidates(self, goal) {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result });
}
}
}
#[instrument(level = "debug", skip_all)]
fn assemble_param_env_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() {
match G::consider_implied_clause(self, goal, assumption, []) {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result })
}
Err(NoSolution) => (),
}
}
}
#[instrument(level = "debug", skip_all)]
fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let alias_ty = match goal.predicate.self_ty().kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(..)
| ty::Never
| ty::Tuple(_)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Error(_) => return,
ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
| ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"),
ty::Alias(_, alias_ty) => alias_ty,
};
for assumption in self.tcx().item_bounds(alias_ty.def_id).subst(self.tcx(), alias_ty.substs)
{
match G::consider_implied_clause(self, goal, assumption, []) {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::AliasBound, result })
}
Err(NoSolution) => (),
}
}
}
#[instrument(level = "debug", skip_all)]
fn assemble_object_bound_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let self_ty = goal.predicate.self_ty();
let bounds = match *self_ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Alias(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(..)
| ty::Never
| ty::Tuple(_)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Error(_) => return,
ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
| ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"),
ty::Dynamic(bounds, ..) => bounds,
};
let tcx = self.tcx();
let own_bounds: FxIndexSet<_> =
bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty)).collect();
for assumption in elaborate(tcx, own_bounds.iter().copied()) {
// FIXME: Predicates are fully elaborated in the object type's existential bounds
// list. We want to only consider these pre-elaborated projections, and not other
// projection predicates that we reach by elaborating the principal trait ref,
// since that'll cause ambiguity.
//
// We can remove this when we have implemented intersections in responses.
if assumption.to_opt_poly_projection_pred().is_some()
&& !own_bounds.contains(&assumption)
{
continue;
}
match G::consider_object_bound_candidate(self, goal, assumption) {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
}
Err(NoSolution) => (),
}
}
}
#[instrument(level = "debug", skip_all)]
fn assemble_coherence_unknowable_candidates<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
match self.solver_mode() {
SolverMode::Normal => return,
SolverMode::Coherence => {
let trait_ref = goal.predicate.trait_ref(self.tcx());
match coherence::trait_ref_is_knowable(self.tcx(), trait_ref) {
Ok(()) => {}
Err(_) => match self
.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
{
Ok(result) => candidates
.push(Candidate { source: CandidateSource::BuiltinImpl, result }),
// FIXME: This will be reachable at some point if we're in
// `assemble_candidates_after_normalizing_self_ty` and we get a
// universe error. We'll deal with it at this point.
Err(NoSolution) => bug!("coherence candidate resulted in NoSolution"),
},
}
}
}
}
/// If there are multiple ways to prove a trait or projection goal, we have
/// to somehow try to merge the candidates into one. If that fails, we return
/// ambiguity.
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn merge_candidates(
&mut self,
mut candidates: Vec<Candidate<'tcx>>,
) -> QueryResult<'tcx> {
// First try merging all candidates. This is complete and fully sound.
let responses = candidates.iter().map(|c| c.result).collect::<Vec<_>>();
if let Some(result) = self.try_merge_responses(&responses) {
return Ok(result);
}
// We then check whether we should prioritize `ParamEnv` candidates.
//
// Doing so is incomplete and would therefore be unsound during coherence.
match self.solver_mode() {
SolverMode::Coherence => (),
// Prioritize `ParamEnv` candidates only if they do not guide inference.
//
// This is still incomplete as we may add incorrect region bounds.
SolverMode::Normal => {
let param_env_responses = candidates
.iter()
.filter(|c| matches!(c.source, CandidateSource::ParamEnv(_)))
.map(|c| c.result)
.collect::<Vec<_>>();
if let Some(result) = self.try_merge_responses(&param_env_responses) {
if result.has_only_region_constraints() {
return Ok(result);
}
}
}
}
self.flounder(&responses)
}
}

View File

@@ -0,0 +1,413 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::{def_id::DefId, Movability, Mutability};
use rustc_infer::traits::query::NoSolution;
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
use crate::solve::EvalCtxt;
// Calculates the constituent types of a type for `auto trait` purposes.
//
// For types with an "existential" binder, i.e. generator witnesses, we also
// instantiate the binder with placeholders eagerly.
pub(crate) fn instantiate_constituent_tys_for_auto_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
let tcx = ecx.tcx();
match *ty.kind() {
ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Error(_)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Never
| ty::Char => Ok(vec![]),
// Treat this like `struct str([u8]);`
ty::Str => Ok(vec![tcx.mk_slice(tcx.types.u8)]),
ty::Dynamic(..)
| ty::Param(..)
| ty::Foreign(..)
| ty::Alias(ty::Projection, ..)
| ty::Placeholder(..) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{ty}`")
}
ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
Ok(vec![element_ty])
}
ty::Array(element_ty, _) | ty::Slice(element_ty) => Ok(vec![element_ty]),
ty::Tuple(ref tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
Ok(tys.iter().collect())
}
ty::Closure(_, ref substs) => Ok(vec![substs.as_closure().tupled_upvars_ty()]),
ty::Generator(_, ref substs, _) => {
let generator_substs = substs.as_generator();
Ok(vec![generator_substs.tupled_upvars_ty(), generator_substs.witness()])
}
ty::GeneratorWitness(types) => Ok(ecx.instantiate_binder_with_placeholders(types).to_vec()),
ty::GeneratorWitnessMIR(def_id, substs) => Ok(ecx
.tcx()
.generator_hidden_types(def_id)
.map(|bty| {
ecx.instantiate_binder_with_placeholders(replace_erased_lifetimes_with_bound_vars(
tcx,
bty.subst(tcx, substs),
))
})
.collect()),
// For `PhantomData<T>`, we pass `T`.
ty::Adt(def, substs) if def.is_phantom_data() => Ok(vec![substs.type_at(0)]),
ty::Adt(def, substs) => Ok(def.all_fields().map(|f| f.ty(tcx, substs)).collect()),
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
// We can resolve the `impl Trait` to its concrete type,
// which enforces a DAG between the functions requiring
// the auto trait bounds in question.
Ok(vec![tcx.type_of(def_id).subst(tcx, substs)])
}
}
}
pub(crate) fn replace_erased_lifetimes_with_bound_vars<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
) -> ty::Binder<'tcx, Ty<'tcx>> {
debug_assert!(!ty.has_late_bound_regions());
let mut counter = 0;
let ty = tcx.fold_regions(ty, |mut r, current_depth| {
if let ty::ReErased = r.kind() {
let br =
ty::BoundRegion { var: ty::BoundVar::from_u32(counter), kind: ty::BrAnon(None) };
counter += 1;
r = tcx.mk_re_late_bound(current_depth, br);
}
r
});
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
(0..counter).map(|_| ty::BoundVariableKind::Region(ty::BrAnon(None))),
);
ty::Binder::bind_with_vars(ty, bound_vars)
}
pub(crate) fn instantiate_constituent_tys_for_sized_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
match *ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::GeneratorWitnessMIR(..)
| ty::Array(..)
| ty::Closure(..)
| ty::Never
| ty::Dynamic(_, _, ty::DynStar)
| ty::Error(_) => Ok(vec![]),
ty::Str
| ty::Slice(_)
| ty::Dynamic(..)
| ty::Foreign(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Placeholder(..) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{ty}`")
}
ty::Tuple(tys) => Ok(tys.to_vec()),
ty::Adt(def, substs) => {
let sized_crit = def.sized_constraint(ecx.tcx());
Ok(sized_crit
.0
.iter()
.map(|ty| sized_crit.rebind(*ty).subst(ecx.tcx(), substs))
.collect())
}
}
}
pub(crate) fn instantiate_constituent_tys_for_copy_clone_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
match *ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Error(_) => Ok(vec![]),
// Implementations are provided in core
ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::Char
| ty::RawPtr(..)
| ty::Never
| ty::Ref(_, _, Mutability::Not)
| ty::Array(..) => Err(NoSolution),
ty::Dynamic(..)
| ty::Str
| ty::Slice(_)
| ty::Generator(_, _, Movability::Static)
| ty::Foreign(..)
| ty::Ref(_, _, Mutability::Mut)
| ty::Adt(_, _)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Placeholder(..) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{ty}`")
}
ty::Tuple(tys) => Ok(tys.to_vec()),
ty::Closure(_, substs) => Ok(vec![substs.as_closure().tupled_upvars_ty()]),
ty::Generator(_, substs, Movability::Movable) => {
if ecx.tcx().features().generator_clone {
let generator = substs.as_generator();
Ok(vec![generator.tupled_upvars_ty(), generator.witness()])
} else {
Err(NoSolution)
}
}
ty::GeneratorWitness(types) => Ok(ecx.instantiate_binder_with_placeholders(types).to_vec()),
ty::GeneratorWitnessMIR(def_id, substs) => Ok(ecx
.tcx()
.generator_hidden_types(def_id)
.map(|bty| {
ecx.instantiate_binder_with_placeholders(replace_erased_lifetimes_with_bound_vars(
ecx.tcx(),
bty.subst(ecx.tcx(), substs),
))
})
.collect()),
}
}
// Returns a binder of the tupled inputs types and output type from a builtin callable type.
pub(crate) fn extract_tupled_inputs_and_output_from_callable<'tcx>(
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
goal_kind: ty::ClosureKind,
) -> Result<Option<ty::Binder<'tcx, (Ty<'tcx>, Ty<'tcx>)>>, NoSolution> {
match *self_ty.kind() {
// keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
ty::FnDef(def_id, substs) => {
let sig = tcx.fn_sig(def_id);
if sig.skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
Ok(Some(
sig.subst(tcx, substs)
.map_bound(|sig| (tcx.mk_tup(sig.inputs()), sig.output())),
))
} else {
Err(NoSolution)
}
}
// keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
ty::FnPtr(sig) => {
if sig.is_fn_trait_compatible() {
Ok(Some(sig.map_bound(|sig| (tcx.mk_tup(sig.inputs()), sig.output()))))
} else {
Err(NoSolution)
}
}
ty::Closure(_, substs) => {
let closure_substs = substs.as_closure();
match closure_substs.kind_ty().to_opt_closure_kind() {
// If the closure's kind doesn't extend the goal kind,
// then the closure doesn't implement the trait.
Some(closure_kind) => {
if !closure_kind.extends(goal_kind) {
return Err(NoSolution);
}
}
// Closure kind is not yet determined, so we return ambiguity unless
// the expected kind is `FnOnce` as that is always implemented.
None => {
if goal_kind != ty::ClosureKind::FnOnce {
return Ok(None);
}
}
}
Ok(Some(closure_substs.sig().map_bound(|sig| (sig.inputs()[0], sig.output()))))
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::Dynamic(_, _, _)
| ty::Generator(_, _, _)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(..)
| ty::Never
| ty::Tuple(_)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Error(_) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{self_ty}`")
}
}
}
/// Assemble a list of predicates that would be present on a theoretical
/// user impl for an object type. These predicates must be checked any time
/// we assemble a built-in object candidate for an object type, since they
/// are not implied by the well-formedness of the type.
///
/// For example, given the following traits:
///
/// ```rust,ignore (theoretical code)
/// trait Foo: Baz {
/// type Bar: Copy;
/// }
///
/// trait Baz {}
/// ```
///
/// For the dyn type `dyn Foo<Item = Ty>`, we can imagine there being a
/// pair of theoretical impls:
///
/// ```rust,ignore (theoretical code)
/// impl Foo for dyn Foo<Item = Ty>
/// where
/// Self: Baz,
/// <Self as Foo>::Bar: Copy,
/// {
/// type Bar = Ty;
/// }
///
/// impl Baz for dyn Foo<Item = Ty> {}
/// ```
///
/// However, in order to make such impls well-formed, we need to do an
/// additional step of eagerly folding the associated types in the where
/// clauses of the impl. In this example, that means replacing
/// `<Self as Foo>::Bar` with `Ty` in the first impl.
pub(crate) fn predicates_for_object_candidate<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
object_bound: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Vec<ty::Predicate<'tcx>> {
let tcx = ecx.tcx();
let mut requirements = vec![];
requirements.extend(
tcx.super_predicates_of(trait_ref.def_id).instantiate(tcx, trait_ref.substs).predicates,
);
for item in tcx.associated_items(trait_ref.def_id).in_definition_order() {
// FIXME(associated_const_equality): Also add associated consts to
// the requirements here.
if item.kind == ty::AssocKind::Type {
requirements.extend(tcx.item_bounds(item.def_id).subst(tcx, trait_ref.substs));
}
}
let mut replace_projection_with = FxHashMap::default();
for bound in object_bound {
if let ty::ExistentialPredicate::Projection(proj) = bound.skip_binder() {
let proj = proj.with_self_ty(tcx, trait_ref.self_ty());
let old_ty = replace_projection_with.insert(proj.def_id(), bound.rebind(proj));
assert_eq!(
old_ty,
None,
"{} has two substitutions: {} and {}",
proj.projection_ty,
proj.term,
old_ty.unwrap()
);
}
}
requirements.fold_with(&mut ReplaceProjectionWith {
ecx,
param_env,
mapping: replace_projection_with,
})
}
struct ReplaceProjectionWith<'a, 'tcx> {
ecx: &'a EvalCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
mapping: FxHashMap<DefId, ty::PolyProjectionPredicate<'tcx>>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceProjectionWith<'_, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.ecx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Alias(ty::Projection, alias_ty) = *ty.kind()
&& let Some(replacement) = self.mapping.get(&alias_ty.def_id)
{
// We may have a case where our object type's projection bound is higher-ranked,
// but the where clauses we instantiated are not. We can solve this by instantiating
// the binder at the usage site.
let proj = self.ecx.instantiate_binder_with_infer(*replacement);
// FIXME: Technically this folder could be fallible?
let nested = self
.ecx
.eq_and_get_goals(self.param_env, alias_ty, proj.projection_ty)
.expect("expected to be able to unify goal projection with dyn's projection");
// FIXME: Technically we could register these too..
assert!(nested.is_empty(), "did not expect unification to have any nested goals");
proj.term.ty().unwrap()
} else {
ty.super_fold_with(self)
}
}
}