Fix overlapping impls
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
//! A subset of a mir body used for const evaluatability checking.
|
||||
use crate::mir;
|
||||
use crate::ty::visit::TypeVisitable;
|
||||
use crate::ty::{self, subst::Subst, DelaySpanBugEmitted, EarlyBinder, SubstsRef, Ty, TyCtxt};
|
||||
use rustc_errors::ErrorGuaranteed;
|
||||
use std::iter;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use std::cmp;
|
||||
use std::ops::ControlFlow;
|
||||
|
||||
rustc_index::newtype_index! {
|
||||
@@ -63,6 +65,31 @@ impl<'tcx> AbstractConst<'tcx> {
|
||||
Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => node,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unify_failure_kind(self, tcx: TyCtxt<'tcx>) -> FailureKind {
|
||||
let mut failure_kind = FailureKind::Concrete;
|
||||
walk_abstract_const::<!, _>(tcx, self, |node| {
|
||||
match node.root(tcx) {
|
||||
Node::Leaf(leaf) => {
|
||||
if leaf.has_infer_types_or_consts() {
|
||||
failure_kind = FailureKind::MentionsInfer;
|
||||
} else if leaf.has_param_types_or_consts() {
|
||||
failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
|
||||
}
|
||||
}
|
||||
Node::Cast(_, _, ty) => {
|
||||
if ty.has_infer_types_or_consts() {
|
||||
failure_kind = FailureKind::MentionsInfer;
|
||||
} else if ty.has_param_types_or_consts() {
|
||||
failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
|
||||
}
|
||||
}
|
||||
Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => {}
|
||||
}
|
||||
ControlFlow::CONTINUE
|
||||
});
|
||||
failure_kind
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
|
||||
@@ -104,7 +131,7 @@ impl<'tcx> TyCtxt<'tcx> {
|
||||
#[inline]
|
||||
pub fn thir_abstract_const_opt_const_arg(
|
||||
self,
|
||||
def: ty::WithOptConstParam<rustc_hir::def_id::DefId>,
|
||||
def: ty::WithOptConstParam<DefId>,
|
||||
) -> Result<Option<&'tcx [Node<'tcx>]>, ErrorGuaranteed> {
|
||||
if let Some((did, param_did)) = def.as_const_arg() {
|
||||
self.thir_abstract_const_of_const_arg((did, param_did))
|
||||
@@ -114,28 +141,6 @@ impl<'tcx> TyCtxt<'tcx> {
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(skip(tcx), level = "debug")]
|
||||
pub fn try_unify_abstract_consts<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
(a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>),
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
) -> bool {
|
||||
(|| {
|
||||
if let Some(a) = AbstractConst::new(tcx, a)? {
|
||||
if let Some(b) = AbstractConst::new(tcx, b)? {
|
||||
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
|
||||
return Ok(const_unify_ctxt.try_unify(a, b));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(false)
|
||||
})()
|
||||
.unwrap_or_else(|_: ErrorGuaranteed| true)
|
||||
// FIXME(generic_const_exprs): We should instead have this
|
||||
// method return the resulting `ty::Const` and return `ConstKind::Error`
|
||||
// on `ErrorGuaranteed`.
|
||||
}
|
||||
|
||||
#[instrument(skip(tcx, f), level = "debug")]
|
||||
pub fn walk_abstract_const<'tcx, R, F>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
@@ -172,119 +177,6 @@ where
|
||||
recurse(tcx, ct, &mut f)
|
||||
}
|
||||
|
||||
pub struct ConstUnifyCtxt<'tcx> {
|
||||
pub tcx: TyCtxt<'tcx>,
|
||||
pub param_env: ty::ParamEnv<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> ConstUnifyCtxt<'tcx> {
|
||||
// Substitutes generics repeatedly to allow AbstractConsts to unify where a
|
||||
// ConstKind::Unevaluated could be turned into an AbstractConst that would unify e.g.
|
||||
// Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
|
||||
#[inline]
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
fn try_replace_substs_in_root(
|
||||
&self,
|
||||
mut abstr_const: AbstractConst<'tcx>,
|
||||
) -> Option<AbstractConst<'tcx>> {
|
||||
while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
|
||||
match AbstractConst::from_const(self.tcx, ct) {
|
||||
Ok(Some(act)) => abstr_const = act,
|
||||
Ok(None) => break,
|
||||
Err(_) => return None,
|
||||
}
|
||||
}
|
||||
|
||||
Some(abstr_const)
|
||||
}
|
||||
|
||||
/// Tries to unify two abstract constants using structural equality.
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
pub fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
|
||||
let a = if let Some(a) = self.try_replace_substs_in_root(a) {
|
||||
a
|
||||
} else {
|
||||
return true;
|
||||
};
|
||||
|
||||
let b = if let Some(b) = self.try_replace_substs_in_root(b) {
|
||||
b
|
||||
} else {
|
||||
return true;
|
||||
};
|
||||
|
||||
let a_root = a.root(self.tcx);
|
||||
let b_root = b.root(self.tcx);
|
||||
debug!(?a_root, ?b_root);
|
||||
|
||||
match (a_root, b_root) {
|
||||
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
|
||||
let a_ct = a_ct.eval(self.tcx, self.param_env);
|
||||
debug!("a_ct evaluated: {:?}", a_ct);
|
||||
let b_ct = b_ct.eval(self.tcx, self.param_env);
|
||||
debug!("b_ct evaluated: {:?}", b_ct);
|
||||
|
||||
if a_ct.ty() != b_ct.ty() {
|
||||
return false;
|
||||
}
|
||||
|
||||
match (a_ct.kind(), b_ct.kind()) {
|
||||
// We can just unify errors with everything to reduce the amount of
|
||||
// emitted errors here.
|
||||
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
|
||||
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
|
||||
a_param == b_param
|
||||
}
|
||||
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
|
||||
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
|
||||
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
|
||||
// means that we only allow inference variables if they are equal.
|
||||
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
|
||||
// We expand generic anonymous constants at the start of this function, so this
|
||||
// branch should only be taking when dealing with associated constants, at
|
||||
// which point directly comparing them seems like the desired behavior.
|
||||
//
|
||||
// FIXME(generic_const_exprs): This isn't actually the case.
|
||||
// We also take this branch for concrete anonymous constants and
|
||||
// expand generic anonymous constants with concrete substs.
|
||||
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
|
||||
a_uv == b_uv
|
||||
}
|
||||
// FIXME(generic_const_exprs): We may want to either actually try
|
||||
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
|
||||
// this, for now we just return false here.
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
|
||||
self.try_unify(a.subtree(al), b.subtree(bl))
|
||||
&& self.try_unify(a.subtree(ar), b.subtree(br))
|
||||
}
|
||||
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
|
||||
self.try_unify(a.subtree(av), b.subtree(bv))
|
||||
}
|
||||
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
|
||||
if a_args.len() == b_args.len() =>
|
||||
{
|
||||
self.try_unify(a.subtree(a_f), b.subtree(b_f))
|
||||
&& iter::zip(a_args, b_args)
|
||||
.all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
|
||||
}
|
||||
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
|
||||
if (a_ty == b_ty) && (a_kind == b_kind) =>
|
||||
{
|
||||
self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
|
||||
}
|
||||
// use this over `_ => false` to make adding variants to `Node` less error prone
|
||||
(Node::Cast(..), _)
|
||||
| (Node::FunctionCall(..), _)
|
||||
| (Node::UnaryOp(..), _)
|
||||
| (Node::Binop(..), _)
|
||||
| (Node::Leaf(..), _) => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We were unable to unify the abstract constant with
|
||||
// a constant found in the caller bounds, there are
|
||||
// now three possible cases here.
|
||||
|
||||
Reference in New Issue
Block a user