rustc_typeck to rustc_hir_analysis

This commit is contained in:
lcnr
2022-09-26 13:00:29 +02:00
parent de0b511daa
commit 1fc86a63f4
140 changed files with 101 additions and 102 deletions

View File

@@ -0,0 +1,411 @@
use crate::astconv::AstConv;
use crate::errors::{ManualImplementation, MissingTypeParams};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, struct_span_err, Applicability, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_session::parse::feature_err;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::symbol::{sym, Ident};
use rustc_span::{Span, Symbol, DUMMY_SP};
use std::collections::BTreeSet;
impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
/// On missing type parameters, emit an E0393 error and provide a structured suggestion using
/// the type parameter's name as a placeholder.
pub(crate) fn complain_about_missing_type_params(
&self,
missing_type_params: Vec<Symbol>,
def_id: DefId,
span: Span,
empty_generic_args: bool,
) {
if missing_type_params.is_empty() {
return;
}
self.tcx().sess.emit_err(MissingTypeParams {
span,
def_span: self.tcx().def_span(def_id),
span_snippet: self.tcx().sess.source_map().span_to_snippet(span).ok(),
missing_type_params,
empty_generic_args,
});
}
/// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
/// an error and attempt to build a reasonable structured suggestion.
pub(crate) fn complain_about_internal_fn_trait(
&self,
span: Span,
trait_def_id: DefId,
trait_segment: &'_ hir::PathSegment<'_>,
is_impl: bool,
) {
if self.tcx().features().unboxed_closures {
return;
}
let trait_def = self.tcx().trait_def(trait_def_id);
if !trait_def.paren_sugar {
if trait_segment.args().parenthesized {
// For now, require that parenthetical notation be used only with `Fn()` etc.
let mut err = feature_err(
&self.tcx().sess.parse_sess,
sym::unboxed_closures,
span,
"parenthetical notation is only stable when used with `Fn`-family traits",
);
err.emit();
}
return;
}
let sess = self.tcx().sess;
if !trait_segment.args().parenthesized {
// For now, require that parenthetical notation be used only with `Fn()` etc.
let mut err = feature_err(
&sess.parse_sess,
sym::unboxed_closures,
span,
"the precise format of `Fn`-family traits' type parameters is subject to change",
);
// Do not suggest the other syntax if we are in trait impl:
// the desugaring would contain an associated type constraint.
if !is_impl {
let args = trait_segment
.args
.as_ref()
.and_then(|args| args.args.get(0))
.and_then(|arg| match arg {
hir::GenericArg::Type(ty) => match ty.kind {
hir::TyKind::Tup(t) => t
.iter()
.map(|e| sess.source_map().span_to_snippet(e.span))
.collect::<Result<Vec<_>, _>>()
.map(|a| a.join(", ")),
_ => sess.source_map().span_to_snippet(ty.span),
}
.map(|s| format!("({})", s))
.ok(),
_ => None,
})
.unwrap_or_else(|| "()".to_string());
let ret = trait_segment
.args()
.bindings
.iter()
.find_map(|b| match (b.ident.name == sym::Output, &b.kind) {
(true, hir::TypeBindingKind::Equality { term }) => {
let span = match term {
hir::Term::Ty(ty) => ty.span,
hir::Term::Const(c) => self.tcx().hir().span(c.hir_id),
};
sess.source_map().span_to_snippet(span).ok()
}
_ => None,
})
.unwrap_or_else(|| "()".to_string());
err.span_suggestion(
span,
"use parenthetical notation instead",
format!("{}{} -> {}", trait_segment.ident, args, ret),
Applicability::MaybeIncorrect,
);
}
err.emit();
}
if is_impl {
let trait_name = self.tcx().def_path_str(trait_def_id);
self.tcx().sess.emit_err(ManualImplementation { span, trait_name });
}
}
pub(crate) fn complain_about_assoc_type_not_found<I>(
&self,
all_candidates: impl Fn() -> I,
ty_param_name: &str,
assoc_name: Ident,
span: Span,
) -> ErrorGuaranteed
where
I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
{
// The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
// valid span, so we point at the whole path segment instead.
let span = if assoc_name.span != DUMMY_SP { assoc_name.span } else { span };
let mut err = struct_span_err!(
self.tcx().sess,
span,
E0220,
"associated type `{}` not found for `{}`",
assoc_name,
ty_param_name
);
let all_candidate_names: Vec<_> = all_candidates()
.flat_map(|r| self.tcx().associated_items(r.def_id()).in_definition_order())
.filter_map(
|item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
)
.collect();
if let (Some(suggested_name), true) = (
find_best_match_for_name(&all_candidate_names, assoc_name.name, None),
assoc_name.span != DUMMY_SP,
) {
err.span_suggestion(
assoc_name.span,
"there is an associated type with a similar name",
suggested_name,
Applicability::MaybeIncorrect,
);
return err.emit();
}
// If we didn't find a good item in the supertraits (or couldn't get
// the supertraits), like in ItemCtxt, then look more generally from
// all visible traits. If there's one clear winner, just suggest that.
let visible_traits: Vec<_> = self
.tcx()
.all_traits()
.filter(|trait_def_id| {
let viz = self.tcx().visibility(*trait_def_id);
if let Some(def_id) = self.item_def_id() {
viz.is_accessible_from(def_id, self.tcx())
} else {
viz.is_visible_locally()
}
})
.collect();
let wider_candidate_names: Vec<_> = visible_traits
.iter()
.flat_map(|trait_def_id| {
self.tcx().associated_items(*trait_def_id).in_definition_order()
})
.filter_map(
|item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
)
.collect();
if let (Some(suggested_name), true) = (
find_best_match_for_name(&wider_candidate_names, assoc_name.name, None),
assoc_name.span != DUMMY_SP,
) {
if let [best_trait] = visible_traits
.iter()
.filter(|trait_def_id| {
self.tcx()
.associated_items(*trait_def_id)
.filter_by_name_unhygienic(suggested_name)
.any(|item| item.kind == ty::AssocKind::Type)
})
.collect::<Vec<_>>()[..]
{
err.span_label(
assoc_name.span,
format!(
"there is a similarly named associated type `{suggested_name}` in the trait `{}`",
self.tcx().def_path_str(*best_trait)
),
);
return err.emit();
}
}
err.span_label(span, format!("associated type `{}` not found", assoc_name));
err.emit()
}
/// When there are any missing associated types, emit an E0191 error and attempt to supply a
/// reasonable suggestion on how to write it. For the case of multiple associated types in the
/// same trait bound have the same name (as they come from different supertraits), we instead
/// emit a generic note suggesting using a `where` clause to constraint instead.
pub(crate) fn complain_about_missing_associated_types(
&self,
associated_types: FxHashMap<Span, BTreeSet<DefId>>,
potential_assoc_types: Vec<Span>,
trait_bounds: &[hir::PolyTraitRef<'_>],
) {
if associated_types.values().all(|v| v.is_empty()) {
return;
}
let tcx = self.tcx();
// FIXME: Marked `mut` so that we can replace the spans further below with a more
// appropriate one, but this should be handled earlier in the span assignment.
let mut associated_types: FxHashMap<Span, Vec<_>> = associated_types
.into_iter()
.map(|(span, def_ids)| {
(span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
})
.collect();
let mut names = vec![];
// Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
// `issue-22560.rs`.
let mut trait_bound_spans: Vec<Span> = vec![];
for (span, items) in &associated_types {
if !items.is_empty() {
trait_bound_spans.push(*span);
}
for assoc_item in items {
let trait_def_id = assoc_item.container_id(tcx);
names.push(format!(
"`{}` (from trait `{}`)",
assoc_item.name,
tcx.def_path_str(trait_def_id),
));
}
}
if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
match bound.trait_ref.path.segments {
// FIXME: `trait_ref.path.span` can point to a full path with multiple
// segments, even though `trait_ref.path.segments` is of length `1`. Work
// around that bug here, even though it should be fixed elsewhere.
// This would otherwise cause an invalid suggestion. For an example, look at
// `src/test/ui/issues/issue-28344.rs` where instead of the following:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^ help: specify the associated type:
// | `BitXor<Output = Type>`
//
// we would output:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^^^^^^^^ help: specify the associated type:
// | `BitXor::bitor<Output = Type>`
[segment] if segment.args.is_none() => {
trait_bound_spans = vec![segment.ident.span];
associated_types = associated_types
.into_iter()
.map(|(_, items)| (segment.ident.span, items))
.collect();
}
_ => {}
}
}
names.sort();
trait_bound_spans.sort();
let mut err = struct_span_err!(
tcx.sess,
trait_bound_spans,
E0191,
"the value of the associated type{} {} must be specified",
pluralize!(names.len()),
names.join(", "),
);
let mut suggestions = vec![];
let mut types_count = 0;
let mut where_constraints = vec![];
let mut already_has_generics_args_suggestion = false;
for (span, assoc_items) in &associated_types {
let mut names: FxHashMap<_, usize> = FxHashMap::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut dupes = false;
for item in assoc_items {
let prefix = if names[&item.name] > 1 {
let trait_def_id = item.container_id(tcx);
dupes = true;
format!("{}::", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
err.span_label(sp, format!("`{}{}` defined here", prefix, item.name));
}
}
if potential_assoc_types.len() == assoc_items.len() {
// When the amount of missing associated types equals the number of
// extra type arguments present. A suggesting to replace the generic args with
// associated types is already emitted.
already_has_generics_args_suggestion = true;
} else if let (Ok(snippet), false) =
(tcx.sess.source_map().span_to_snippet(*span), dupes)
{
let types: Vec<_> =
assoc_items.iter().map(|item| format!("{} = Type", item.name)).collect();
let code = if snippet.ends_with('>') {
// The user wrote `Trait<'a>` or similar and we don't have a type we can
// suggest, but at least we can clue them to the correct syntax
// `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
// suggestion.
format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
} else {
// The user wrote `Iterator`, so we don't have a type we can suggest, but at
// least we can clue them to the correct syntax `Iterator<Item = Type>`.
format!("{}<{}>", snippet, types.join(", "))
};
suggestions.push((*span, code));
} else if dupes {
where_constraints.push(*span);
}
}
let where_msg = "consider introducing a new type parameter, adding `where` constraints \
using the fully-qualified path to the associated types";
if !where_constraints.is_empty() && suggestions.is_empty() {
// If there are duplicates associated type names and a single trait bound do not
// use structured suggestion, it means that there are multiple supertraits with
// the same associated type name.
err.help(where_msg);
}
if suggestions.len() != 1 || already_has_generics_args_suggestion {
// We don't need this label if there's an inline suggestion, show otherwise.
for (span, assoc_items) in &associated_types {
let mut names: FxHashMap<_, usize> = FxHashMap::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut label = vec![];
for item in assoc_items {
let postfix = if names[&item.name] > 1 {
let trait_def_id = item.container_id(tcx);
format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
label.push(format!("`{}`{}", item.name, postfix));
}
if !label.is_empty() {
err.span_label(
*span,
format!(
"associated type{} {} must be specified",
pluralize!(label.len()),
label.join(", "),
),
);
}
}
}
if !suggestions.is_empty() {
err.multipart_suggestion(
&format!("specify the associated type{}", pluralize!(types_count)),
suggestions,
Applicability::HasPlaceholders,
);
if !where_constraints.is_empty() {
err.span_help(where_constraints, where_msg);
}
}
err.emit();
}
}

View File

@@ -0,0 +1,663 @@
use super::IsMethodCall;
use crate::astconv::{
AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
GenericArgCountResult, GenericArgPosition,
};
use crate::errors::AssocTypeBindingNotAllowed;
use crate::structured_errors::{GenericArgsInfo, StructuredDiagnostic, WrongNumberOfGenericArgs};
use rustc_ast::ast::ParamKindOrd;
use rustc_errors::{struct_span_err, Applicability, Diagnostic, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::GenericArg;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::ty::{
self, subst, subst::SubstsRef, GenericParamDef, GenericParamDefKind, IsSuggestable, Ty, TyCtxt,
};
use rustc_session::lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS;
use rustc_span::{symbol::kw, Span};
use smallvec::SmallVec;
impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
/// Report an error that a generic argument did not match the generic parameter that was
/// expected.
fn generic_arg_mismatch_err(
tcx: TyCtxt<'_>,
arg: &GenericArg<'_>,
param: &GenericParamDef,
possible_ordering_error: bool,
help: Option<&str>,
) {
let sess = tcx.sess;
let mut err = struct_span_err!(
sess,
arg.span(),
E0747,
"{} provided when a {} was expected",
arg.descr(),
param.kind.descr(),
);
if let GenericParamDefKind::Const { .. } = param.kind {
if matches!(arg, GenericArg::Type(hir::Ty { kind: hir::TyKind::Infer, .. })) {
err.help("const arguments cannot yet be inferred with `_`");
if sess.is_nightly_build() {
err.help(
"add `#![feature(generic_arg_infer)]` to the crate attributes to enable",
);
}
}
}
let add_braces_suggestion = |arg: &GenericArg<'_>, err: &mut Diagnostic| {
let suggestions = vec![
(arg.span().shrink_to_lo(), String::from("{ ")),
(arg.span().shrink_to_hi(), String::from(" }")),
];
err.multipart_suggestion(
"if this generic argument was intended as a const parameter, \
surround it with braces",
suggestions,
Applicability::MaybeIncorrect,
);
};
// Specific suggestion set for diagnostics
match (arg, &param.kind) {
(
GenericArg::Type(hir::Ty {
kind: hir::TyKind::Path(rustc_hir::QPath::Resolved(_, path)),
..
}),
GenericParamDefKind::Const { .. },
) => match path.res {
Res::Err => {
add_braces_suggestion(arg, &mut err);
err.set_primary_message(
"unresolved item provided when a constant was expected",
)
.emit();
return;
}
Res::Def(DefKind::TyParam, src_def_id) => {
if let Some(param_local_id) = param.def_id.as_local() {
let param_name = tcx.hir().ty_param_name(param_local_id);
let param_type = tcx.infer_ctxt().enter(|infcx| {
infcx.resolve_numeric_literals_with_default(tcx.type_of(param.def_id))
});
if param_type.is_suggestable(tcx, false) {
err.span_suggestion(
tcx.def_span(src_def_id),
"consider changing this type parameter to be a `const` generic",
format!("const {}: {}", param_name, param_type),
Applicability::MaybeIncorrect,
);
};
}
}
_ => add_braces_suggestion(arg, &mut err),
},
(
GenericArg::Type(hir::Ty { kind: hir::TyKind::Path(_), .. }),
GenericParamDefKind::Const { .. },
) => add_braces_suggestion(arg, &mut err),
(
GenericArg::Type(hir::Ty { kind: hir::TyKind::Array(_, len), .. }),
GenericParamDefKind::Const { .. },
) if tcx.type_of(param.def_id) == tcx.types.usize => {
let snippet = sess.source_map().span_to_snippet(tcx.hir().span(len.hir_id()));
if let Ok(snippet) = snippet {
err.span_suggestion(
arg.span(),
"array type provided where a `usize` was expected, try",
format!("{{ {} }}", snippet),
Applicability::MaybeIncorrect,
);
}
}
(GenericArg::Const(cnst), GenericParamDefKind::Type { .. }) => {
let body = tcx.hir().body(cnst.value.body);
if let rustc_hir::ExprKind::Path(rustc_hir::QPath::Resolved(_, path)) =
body.value.kind
{
if let Res::Def(DefKind::Fn { .. }, id) = path.res {
err.help(&format!(
"`{}` is a function item, not a type",
tcx.item_name(id)
));
err.help("function item types cannot be named directly");
}
}
}
_ => {}
}
let kind_ord = param.kind.to_ord();
let arg_ord = arg.to_ord();
// This note is only true when generic parameters are strictly ordered by their kind.
if possible_ordering_error && kind_ord.cmp(&arg_ord) != core::cmp::Ordering::Equal {
let (first, last) = if kind_ord < arg_ord {
(param.kind.descr(), arg.descr())
} else {
(arg.descr(), param.kind.descr())
};
err.note(&format!("{} arguments must be provided before {} arguments", first, last));
if let Some(help) = help {
err.help(help);
}
}
err.emit();
}
/// Creates the relevant generic argument substitutions
/// corresponding to a set of generic parameters. This is a
/// rather complex function. Let us try to explain the role
/// of each of its parameters:
///
/// To start, we are given the `def_id` of the thing we are
/// creating the substitutions for, and a partial set of
/// substitutions `parent_substs`. In general, the substitutions
/// for an item begin with substitutions for all the "parents" of
/// that item -- e.g., for a method it might include the
/// parameters from the impl.
///
/// Therefore, the method begins by walking down these parents,
/// starting with the outermost parent and proceed inwards until
/// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
/// first to see if the parent's substitutions are listed in there. If so,
/// we can append those and move on. Otherwise, it invokes the
/// three callback functions:
///
/// - `args_for_def_id`: given the `DefId` `P`, supplies back the
/// generic arguments that were given to that parent from within
/// the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
/// might refer to the trait `Foo`, and the arguments might be
/// `[T]`. The boolean value indicates whether to infer values
/// for arguments whose values were not explicitly provided.
/// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
/// instantiate a `GenericArg`.
/// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
/// creates a suitable inference variable.
pub fn create_substs_for_generic_args<'a>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
parent_substs: &[subst::GenericArg<'tcx>],
has_self: bool,
self_ty: Option<Ty<'tcx>>,
arg_count: &GenericArgCountResult,
ctx: &mut impl CreateSubstsForGenericArgsCtxt<'a, 'tcx>,
) -> SubstsRef<'tcx> {
// Collect the segments of the path; we need to substitute arguments
// for parameters throughout the entire path (wherever there are
// generic parameters).
let mut parent_defs = tcx.generics_of(def_id);
let count = parent_defs.count();
let mut stack = vec![(def_id, parent_defs)];
while let Some(def_id) = parent_defs.parent {
parent_defs = tcx.generics_of(def_id);
stack.push((def_id, parent_defs));
}
// We manually build up the substitution, rather than using convenience
// methods in `subst.rs`, so that we can iterate over the arguments and
// parameters in lock-step linearly, instead of trying to match each pair.
let mut substs: SmallVec<[subst::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
// Iterate over each segment of the path.
while let Some((def_id, defs)) = stack.pop() {
let mut params = defs.params.iter().peekable();
// If we have already computed substitutions for parents, we can use those directly.
while let Some(&param) = params.peek() {
if let Some(&kind) = parent_substs.get(param.index as usize) {
substs.push(kind);
params.next();
} else {
break;
}
}
// `Self` is handled first, unless it's been handled in `parent_substs`.
if has_self {
if let Some(&param) = params.peek() {
if param.index == 0 {
if let GenericParamDefKind::Type { .. } = param.kind {
substs.push(
self_ty
.map(|ty| ty.into())
.unwrap_or_else(|| ctx.inferred_kind(None, param, true)),
);
params.next();
}
}
}
}
// Check whether this segment takes generic arguments and the user has provided any.
let (generic_args, infer_args) = ctx.args_for_def_id(def_id);
let args_iter = generic_args.iter().flat_map(|generic_args| generic_args.args.iter());
let mut args = args_iter.clone().peekable();
// If we encounter a type or const when we expect a lifetime, we infer the lifetimes.
// If we later encounter a lifetime, we know that the arguments were provided in the
// wrong order. `force_infer_lt` records the type or const that forced lifetimes to be
// inferred, so we can use it for diagnostics later.
let mut force_infer_lt = None;
loop {
// We're going to iterate through the generic arguments that the user
// provided, matching them with the generic parameters we expect.
// Mismatches can occur as a result of elided lifetimes, or for malformed
// input. We try to handle both sensibly.
match (args.peek(), params.peek()) {
(Some(&arg), Some(&param)) => {
match (arg, &param.kind, arg_count.explicit_late_bound) {
(GenericArg::Lifetime(_), GenericParamDefKind::Lifetime, _)
| (
GenericArg::Type(_) | GenericArg::Infer(_),
GenericParamDefKind::Type { .. },
_,
)
| (
GenericArg::Const(_) | GenericArg::Infer(_),
GenericParamDefKind::Const { .. },
_,
) => {
substs.push(ctx.provided_kind(param, arg));
args.next();
params.next();
}
(
GenericArg::Infer(_) | GenericArg::Type(_) | GenericArg::Const(_),
GenericParamDefKind::Lifetime,
_,
) => {
// We expected a lifetime argument, but got a type or const
// argument. That means we're inferring the lifetimes.
substs.push(ctx.inferred_kind(None, param, infer_args));
force_infer_lt = Some((arg, param));
params.next();
}
(GenericArg::Lifetime(_), _, ExplicitLateBound::Yes) => {
// We've come across a lifetime when we expected something else in
// the presence of explicit late bounds. This is most likely
// due to the presence of the explicit bound so we're just going to
// ignore it.
args.next();
}
(_, _, _) => {
// We expected one kind of parameter, but the user provided
// another. This is an error. However, if we already know that
// the arguments don't match up with the parameters, we won't issue
// an additional error, as the user already knows what's wrong.
if arg_count.correct.is_ok() {
// We're going to iterate over the parameters to sort them out, and
// show that order to the user as a possible order for the parameters
let mut param_types_present = defs
.params
.iter()
.map(|param| (param.kind.to_ord(), param.clone()))
.collect::<Vec<(ParamKindOrd, GenericParamDef)>>();
param_types_present.sort_by_key(|(ord, _)| *ord);
let (mut param_types_present, ordered_params): (
Vec<ParamKindOrd>,
Vec<GenericParamDef>,
) = param_types_present.into_iter().unzip();
param_types_present.dedup();
Self::generic_arg_mismatch_err(
tcx,
arg,
param,
!args_iter.clone().is_sorted_by_key(|arg| arg.to_ord()),
Some(&format!(
"reorder the arguments: {}: `<{}>`",
param_types_present
.into_iter()
.map(|ord| format!("{}s", ord))
.collect::<Vec<String>>()
.join(", then "),
ordered_params
.into_iter()
.filter_map(|param| {
if param.name == kw::SelfUpper {
None
} else {
Some(param.name.to_string())
}
})
.collect::<Vec<String>>()
.join(", ")
)),
);
}
// We've reported the error, but we want to make sure that this
// problem doesn't bubble down and create additional, irrelevant
// errors. In this case, we're simply going to ignore the argument
// and any following arguments. The rest of the parameters will be
// inferred.
while args.next().is_some() {}
}
}
}
(Some(&arg), None) => {
// We should never be able to reach this point with well-formed input.
// There are three situations in which we can encounter this issue.
//
// 1. The number of arguments is incorrect. In this case, an error
// will already have been emitted, and we can ignore it.
// 2. There are late-bound lifetime parameters present, yet the
// lifetime arguments have also been explicitly specified by the
// user.
// 3. We've inferred some lifetimes, which have been provided later (i.e.
// after a type or const). We want to throw an error in this case.
if arg_count.correct.is_ok()
&& arg_count.explicit_late_bound == ExplicitLateBound::No
{
let kind = arg.descr();
assert_eq!(kind, "lifetime");
let (provided_arg, param) =
force_infer_lt.expect("lifetimes ought to have been inferred");
Self::generic_arg_mismatch_err(tcx, provided_arg, param, false, None);
}
break;
}
(None, Some(&param)) => {
// If there are fewer arguments than parameters, it means
// we're inferring the remaining arguments.
substs.push(ctx.inferred_kind(Some(&substs), param, infer_args));
params.next();
}
(None, None) => break,
}
}
}
tcx.intern_substs(&substs)
}
/// Checks that the correct number of generic arguments have been provided.
/// Used specifically for function calls.
pub fn check_generic_arg_count_for_call(
tcx: TyCtxt<'_>,
span: Span,
def_id: DefId,
generics: &ty::Generics,
seg: &hir::PathSegment<'_>,
is_method_call: IsMethodCall,
) -> GenericArgCountResult {
let empty_args = hir::GenericArgs::none();
let gen_args = seg.args.unwrap_or(&empty_args);
let gen_pos = if is_method_call == IsMethodCall::Yes {
GenericArgPosition::MethodCall
} else {
GenericArgPosition::Value
};
let has_self = generics.parent.is_none() && generics.has_self;
Self::check_generic_arg_count(
tcx,
span,
def_id,
seg,
generics,
gen_args,
gen_pos,
has_self,
seg.infer_args,
)
}
/// Checks that the correct number of generic arguments have been provided.
/// This is used both for datatypes and function calls.
#[instrument(skip(tcx, gen_pos), level = "debug")]
pub(crate) fn check_generic_arg_count(
tcx: TyCtxt<'_>,
span: Span,
def_id: DefId,
seg: &hir::PathSegment<'_>,
gen_params: &ty::Generics,
gen_args: &hir::GenericArgs<'_>,
gen_pos: GenericArgPosition,
has_self: bool,
infer_args: bool,
) -> GenericArgCountResult {
let default_counts = gen_params.own_defaults();
let param_counts = gen_params.own_counts();
// Subtracting from param count to ensure type params synthesized from `impl Trait`
// cannot be explicitly specified.
let synth_type_param_count = gen_params
.params
.iter()
.filter(|param| {
matches!(param.kind, ty::GenericParamDefKind::Type { synthetic: true, .. })
})
.count();
let named_type_param_count =
param_counts.types - has_self as usize - synth_type_param_count;
let infer_lifetimes =
(gen_pos != GenericArgPosition::Type || infer_args) && !gen_args.has_lifetime_params();
if gen_pos != GenericArgPosition::Type && !gen_args.bindings.is_empty() {
Self::prohibit_assoc_ty_binding(tcx, gen_args.bindings[0].span);
}
let explicit_late_bound =
Self::prohibit_explicit_late_bound_lifetimes(tcx, gen_params, gen_args, gen_pos);
let mut invalid_args = vec![];
let mut check_lifetime_args =
|min_expected_args: usize,
max_expected_args: usize,
provided_args: usize,
late_bounds_ignore: bool| {
if (min_expected_args..=max_expected_args).contains(&provided_args) {
return Ok(());
}
if late_bounds_ignore {
return Ok(());
}
if provided_args > max_expected_args {
invalid_args.extend(
gen_args.args[max_expected_args..provided_args]
.iter()
.map(|arg| arg.span()),
);
};
let gen_args_info = if provided_args > min_expected_args {
invalid_args.extend(
gen_args.args[min_expected_args..provided_args]
.iter()
.map(|arg| arg.span()),
);
let num_redundant_args = provided_args - min_expected_args;
GenericArgsInfo::ExcessLifetimes { num_redundant_args }
} else {
let num_missing_args = min_expected_args - provided_args;
GenericArgsInfo::MissingLifetimes { num_missing_args }
};
let reported = WrongNumberOfGenericArgs::new(
tcx,
gen_args_info,
seg,
gen_params,
has_self as usize,
gen_args,
def_id,
)
.diagnostic()
.emit();
Err(reported)
};
let min_expected_lifetime_args = if infer_lifetimes { 0 } else { param_counts.lifetimes };
let max_expected_lifetime_args = param_counts.lifetimes;
let num_provided_lifetime_args = gen_args.num_lifetime_params();
let lifetimes_correct = check_lifetime_args(
min_expected_lifetime_args,
max_expected_lifetime_args,
num_provided_lifetime_args,
explicit_late_bound == ExplicitLateBound::Yes,
);
let mut check_types_and_consts = |expected_min,
expected_max,
expected_max_with_synth,
provided,
params_offset,
args_offset| {
debug!(
?expected_min,
?expected_max,
?provided,
?params_offset,
?args_offset,
"check_types_and_consts"
);
if (expected_min..=expected_max).contains(&provided) {
return Ok(());
}
let num_default_params = expected_max - expected_min;
let gen_args_info = if provided > expected_max {
invalid_args.extend(
gen_args.args[args_offset + expected_max..args_offset + provided]
.iter()
.map(|arg| arg.span()),
);
let num_redundant_args = provided - expected_max;
// Provide extra note if synthetic arguments like `impl Trait` are specified.
let synth_provided = provided <= expected_max_with_synth;
GenericArgsInfo::ExcessTypesOrConsts {
num_redundant_args,
num_default_params,
args_offset,
synth_provided,
}
} else {
let num_missing_args = expected_max - provided;
GenericArgsInfo::MissingTypesOrConsts {
num_missing_args,
num_default_params,
args_offset,
}
};
debug!(?gen_args_info);
let reported = WrongNumberOfGenericArgs::new(
tcx,
gen_args_info,
seg,
gen_params,
params_offset,
gen_args,
def_id,
)
.diagnostic()
.emit_unless(gen_args.has_err());
Err(reported)
};
let args_correct = {
let expected_min = if infer_args {
0
} else {
param_counts.consts + named_type_param_count
- default_counts.types
- default_counts.consts
};
debug!(?expected_min);
debug!(arg_counts.lifetimes=?gen_args.num_lifetime_params());
check_types_and_consts(
expected_min,
param_counts.consts + named_type_param_count,
param_counts.consts + named_type_param_count + synth_type_param_count,
gen_args.num_generic_params(),
param_counts.lifetimes + has_self as usize,
gen_args.num_lifetime_params(),
)
};
GenericArgCountResult {
explicit_late_bound,
correct: lifetimes_correct.and(args_correct).map_err(|reported| {
GenericArgCountMismatch { reported: Some(reported), invalid_args }
}),
}
}
/// Emits an error regarding forbidden type binding associations
pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_>, span: Span) {
tcx.sess.emit_err(AssocTypeBindingNotAllowed { span });
}
/// Prohibits explicit lifetime arguments if late-bound lifetime parameters
/// are present. This is used both for datatypes and function calls.
pub(crate) fn prohibit_explicit_late_bound_lifetimes(
tcx: TyCtxt<'_>,
def: &ty::Generics,
args: &hir::GenericArgs<'_>,
position: GenericArgPosition,
) -> ExplicitLateBound {
let param_counts = def.own_counts();
let infer_lifetimes = position != GenericArgPosition::Type && !args.has_lifetime_params();
if infer_lifetimes {
return ExplicitLateBound::No;
}
if let Some(span_late) = def.has_late_bound_regions {
let msg = "cannot specify lifetime arguments explicitly \
if late bound lifetime parameters are present";
let note = "the late bound lifetime parameter is introduced here";
let span = args.args[0].span();
if position == GenericArgPosition::Value
&& args.num_lifetime_params() != param_counts.lifetimes
{
let mut err = tcx.sess.struct_span_err(span, msg);
err.span_note(span_late, note);
err.emit();
} else {
let mut multispan = MultiSpan::from_span(span);
multispan.push_span_label(span_late, note);
tcx.struct_span_lint_hir(
LATE_BOUND_LIFETIME_ARGUMENTS,
args.args[0].hir_id(),
multispan,
|lint| {
lint.build(msg).emit();
},
);
}
ExplicitLateBound::Yes
} else {
ExplicitLateBound::No
}
}
}

File diff suppressed because it is too large Load Diff