Runtime removal: refactor process
This patch continues the runtime removal by moving and refactoring the process implementation into the new `sys` module. Because this eliminates APIs in `libnative` and `librustrt`, it is a: [breaking-change] This functionality is likely to be available publicly, in some form, from `std` in the future.
This commit is contained in:
587
src/libstd/sys/unix/process.rs
Normal file
587
src/libstd/sys/unix/process.rs
Normal file
@@ -0,0 +1,587 @@
|
||||
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use libc::{mod, pid_t, c_void, c_int};
|
||||
use c_str::CString;
|
||||
use io::{mod, IoResult, IoError};
|
||||
use mem;
|
||||
use os;
|
||||
use ptr;
|
||||
use prelude::*;
|
||||
use io::process::{ProcessExit, ExitStatus, ExitSignal};
|
||||
use collections;
|
||||
use path::BytesContainer;
|
||||
use hash::Hash;
|
||||
|
||||
use sys::{mod, retry, c, wouldblock, set_nonblocking, ms_to_timeval};
|
||||
use sys::fs::FileDesc;
|
||||
use sys_common::helper_thread::Helper;
|
||||
use sys_common::{AsFileDesc, mkerr_libc, timeout};
|
||||
|
||||
pub use sys_common::ProcessConfig;
|
||||
|
||||
helper_init!(static HELPER: Helper<Req>)
|
||||
|
||||
/// The unique id of the process (this should never be negative).
|
||||
pub struct Process {
|
||||
pub pid: pid_t
|
||||
}
|
||||
|
||||
enum Req {
|
||||
NewChild(libc::pid_t, Sender<ProcessExit>, u64),
|
||||
}
|
||||
|
||||
impl Process {
|
||||
pub fn id(&self) -> pid_t {
|
||||
self.pid
|
||||
}
|
||||
|
||||
pub unsafe fn kill(&self, signal: int) -> IoResult<()> {
|
||||
Process::killpid(self.pid, signal)
|
||||
}
|
||||
|
||||
pub unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> {
|
||||
let r = libc::funcs::posix88::signal::kill(pid, signal as c_int);
|
||||
mkerr_libc(r)
|
||||
}
|
||||
|
||||
pub fn spawn<K, V, C, P>(cfg: &C, in_fd: Option<P>,
|
||||
out_fd: Option<P>, err_fd: Option<P>)
|
||||
-> IoResult<Process>
|
||||
where C: ProcessConfig<K, V>, P: AsFileDesc,
|
||||
K: BytesContainer + Eq + Hash, V: BytesContainer
|
||||
{
|
||||
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
|
||||
use libc::funcs::bsd44::getdtablesize;
|
||||
|
||||
mod rustrt {
|
||||
extern {
|
||||
pub fn rust_unset_sigprocmask();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(target_os = "macos")]
|
||||
unsafe fn set_environ(envp: *const c_void) {
|
||||
extern { fn _NSGetEnviron() -> *mut *const c_void; }
|
||||
|
||||
*_NSGetEnviron() = envp;
|
||||
}
|
||||
#[cfg(not(target_os = "macos"))]
|
||||
unsafe fn set_environ(envp: *const c_void) {
|
||||
extern { static mut environ: *const c_void; }
|
||||
environ = envp;
|
||||
}
|
||||
|
||||
unsafe fn set_cloexec(fd: c_int) {
|
||||
let ret = c::ioctl(fd, c::FIOCLEX);
|
||||
assert_eq!(ret, 0);
|
||||
}
|
||||
|
||||
let dirp = cfg.cwd().map(|c| c.as_ptr()).unwrap_or(ptr::null());
|
||||
|
||||
// temporary until unboxed closures land
|
||||
let cfg = unsafe {
|
||||
mem::transmute::<&ProcessConfig<K,V>,&'static ProcessConfig<K,V>>(cfg)
|
||||
};
|
||||
|
||||
with_envp(cfg.env(), proc(envp) {
|
||||
with_argv(cfg.program(), cfg.args(), proc(argv) unsafe {
|
||||
let (input, mut output) = try!(sys::os::pipe());
|
||||
|
||||
// We may use this in the child, so perform allocations before the
|
||||
// fork
|
||||
let devnull = "/dev/null".to_c_str();
|
||||
|
||||
set_cloexec(output.fd());
|
||||
|
||||
let pid = fork();
|
||||
if pid < 0 {
|
||||
return Err(super::last_error())
|
||||
} else if pid > 0 {
|
||||
drop(output);
|
||||
let mut bytes = [0, ..4];
|
||||
return match input.read(bytes) {
|
||||
Ok(4) => {
|
||||
let errno = (bytes[0] as i32 << 24) |
|
||||
(bytes[1] as i32 << 16) |
|
||||
(bytes[2] as i32 << 8) |
|
||||
(bytes[3] as i32 << 0);
|
||||
Err(super::decode_error(errno))
|
||||
}
|
||||
Err(..) => Ok(Process { pid: pid }),
|
||||
Ok(..) => panic!("short read on the cloexec pipe"),
|
||||
};
|
||||
}
|
||||
|
||||
// And at this point we've reached a special time in the life of the
|
||||
// child. The child must now be considered hamstrung and unable to
|
||||
// do anything other than syscalls really. Consider the following
|
||||
// scenario:
|
||||
//
|
||||
// 1. Thread A of process 1 grabs the malloc() mutex
|
||||
// 2. Thread B of process 1 forks(), creating thread C
|
||||
// 3. Thread C of process 2 then attempts to malloc()
|
||||
// 4. The memory of process 2 is the same as the memory of
|
||||
// process 1, so the mutex is locked.
|
||||
//
|
||||
// This situation looks a lot like deadlock, right? It turns out
|
||||
// that this is what pthread_atfork() takes care of, which is
|
||||
// presumably implemented across platforms. The first thing that
|
||||
// threads to *before* forking is to do things like grab the malloc
|
||||
// mutex, and then after the fork they unlock it.
|
||||
//
|
||||
// Despite this information, libnative's spawn has been witnessed to
|
||||
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
|
||||
// all collected backtraces point at malloc/free traffic in the
|
||||
// child spawned process.
|
||||
//
|
||||
// For this reason, the block of code below should contain 0
|
||||
// invocations of either malloc of free (or their related friends).
|
||||
//
|
||||
// As an example of not having malloc/free traffic, we don't close
|
||||
// this file descriptor by dropping the FileDesc (which contains an
|
||||
// allocation). Instead we just close it manually. This will never
|
||||
// have the drop glue anyway because this code never returns (the
|
||||
// child will either exec() or invoke libc::exit)
|
||||
let _ = libc::close(input.fd());
|
||||
|
||||
fn fail(output: &mut FileDesc) -> ! {
|
||||
let errno = sys::os::errno();
|
||||
let bytes = [
|
||||
(errno >> 24) as u8,
|
||||
(errno >> 16) as u8,
|
||||
(errno >> 8) as u8,
|
||||
(errno >> 0) as u8,
|
||||
];
|
||||
assert!(output.write(bytes).is_ok());
|
||||
unsafe { libc::_exit(1) }
|
||||
}
|
||||
|
||||
rustrt::rust_unset_sigprocmask();
|
||||
|
||||
// If a stdio file descriptor is set to be ignored (via a -1 file
|
||||
// descriptor), then we don't actually close it, but rather open
|
||||
// up /dev/null into that file descriptor. Otherwise, the first file
|
||||
// descriptor opened up in the child would be numbered as one of the
|
||||
// stdio file descriptors, which is likely to wreak havoc.
|
||||
let setup = |src: Option<P>, dst: c_int| {
|
||||
let src = match src {
|
||||
None => {
|
||||
let flags = if dst == libc::STDIN_FILENO {
|
||||
libc::O_RDONLY
|
||||
} else {
|
||||
libc::O_RDWR
|
||||
};
|
||||
libc::open(devnull.as_ptr(), flags, 0)
|
||||
}
|
||||
Some(obj) => {
|
||||
let fd = obj.as_fd().fd();
|
||||
// Leak the memory and the file descriptor. We're in the
|
||||
// child now an all our resources are going to be
|
||||
// cleaned up very soon
|
||||
mem::forget(obj);
|
||||
fd
|
||||
}
|
||||
};
|
||||
src != -1 && retry(|| dup2(src, dst)) != -1
|
||||
};
|
||||
|
||||
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
|
||||
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
|
||||
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
|
||||
|
||||
// close all other fds
|
||||
for fd in range(3, getdtablesize()).rev() {
|
||||
if fd != output.fd() {
|
||||
let _ = close(fd as c_int);
|
||||
}
|
||||
}
|
||||
|
||||
match cfg.gid() {
|
||||
Some(u) => {
|
||||
if libc::setgid(u as libc::gid_t) != 0 {
|
||||
fail(&mut output);
|
||||
}
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
match cfg.uid() {
|
||||
Some(u) => {
|
||||
// When dropping privileges from root, the `setgroups` call
|
||||
// will remove any extraneous groups. If we don't call this,
|
||||
// then even though our uid has dropped, we may still have
|
||||
// groups that enable us to do super-user things. This will
|
||||
// fail if we aren't root, so don't bother checking the
|
||||
// return value, this is just done as an optimistic
|
||||
// privilege dropping function.
|
||||
extern {
|
||||
fn setgroups(ngroups: libc::c_int,
|
||||
ptr: *const libc::c_void) -> libc::c_int;
|
||||
}
|
||||
let _ = setgroups(0, 0 as *const libc::c_void);
|
||||
|
||||
if libc::setuid(u as libc::uid_t) != 0 {
|
||||
fail(&mut output);
|
||||
}
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
if cfg.detach() {
|
||||
// Don't check the error of setsid because it fails if we're the
|
||||
// process leader already. We just forked so it shouldn't return
|
||||
// error, but ignore it anyway.
|
||||
let _ = libc::setsid();
|
||||
}
|
||||
if !dirp.is_null() && chdir(dirp) == -1 {
|
||||
fail(&mut output);
|
||||
}
|
||||
if !envp.is_null() {
|
||||
set_environ(envp);
|
||||
}
|
||||
let _ = execvp(*argv, argv as *mut _);
|
||||
fail(&mut output);
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
pub fn wait(&self, deadline: u64) -> IoResult<ProcessExit> {
|
||||
use std::cmp;
|
||||
use std::comm;
|
||||
|
||||
static mut WRITE_FD: libc::c_int = 0;
|
||||
|
||||
let mut status = 0 as c_int;
|
||||
if deadline == 0 {
|
||||
return match retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) }) {
|
||||
-1 => panic!("unknown waitpid error: {}", super::last_error()),
|
||||
_ => Ok(translate_status(status)),
|
||||
}
|
||||
}
|
||||
|
||||
// On unix, wait() and its friends have no timeout parameters, so there is
|
||||
// no way to time out a thread in wait(). From some googling and some
|
||||
// thinking, it appears that there are a few ways to handle timeouts in
|
||||
// wait(), but the only real reasonable one for a multi-threaded program is
|
||||
// to listen for SIGCHLD.
|
||||
//
|
||||
// With this in mind, the waiting mechanism with a timeout barely uses
|
||||
// waitpid() at all. There are a few times that waitpid() is invoked with
|
||||
// WNOHANG, but otherwise all the necessary blocking is done by waiting for
|
||||
// a SIGCHLD to arrive (and that blocking has a timeout). Note, however,
|
||||
// that waitpid() is still used to actually reap the child.
|
||||
//
|
||||
// Signal handling is super tricky in general, and this is no exception. Due
|
||||
// to the async nature of SIGCHLD, we use the self-pipe trick to transmit
|
||||
// data out of the signal handler to the rest of the application. The first
|
||||
// idea would be to have each thread waiting with a timeout to read this
|
||||
// output file descriptor, but a write() is akin to a signal(), not a
|
||||
// broadcast(), so it would only wake up one thread, and possibly the wrong
|
||||
// thread. Hence a helper thread is used.
|
||||
//
|
||||
// The helper thread here is responsible for farming requests for a
|
||||
// waitpid() with a timeout, and then processing all of the wait requests.
|
||||
// By guaranteeing that only this helper thread is reading half of the
|
||||
// self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread
|
||||
// is also responsible for select() to wait for incoming messages or
|
||||
// incoming SIGCHLD messages, along with passing an appropriate timeout to
|
||||
// select() to wake things up as necessary.
|
||||
//
|
||||
// The ordering of the following statements is also very purposeful. First,
|
||||
// we must be guaranteed that the helper thread is booted and available to
|
||||
// receive SIGCHLD signals, and then we must also ensure that we do a
|
||||
// nonblocking waitpid() at least once before we go ask the sigchld helper.
|
||||
// This prevents the race where the child exits, we boot the helper, and
|
||||
// then we ask for the child's exit status (never seeing a sigchld).
|
||||
//
|
||||
// The actual communication between the helper thread and this thread is
|
||||
// quite simple, just a channel moving data around.
|
||||
|
||||
unsafe { HELPER.boot(register_sigchld, waitpid_helper) }
|
||||
|
||||
match self.try_wait() {
|
||||
Some(ret) => return Ok(ret),
|
||||
None => {}
|
||||
}
|
||||
|
||||
let (tx, rx) = channel();
|
||||
unsafe { HELPER.send(NewChild(self.pid, tx, deadline)); }
|
||||
return match rx.recv_opt() {
|
||||
Ok(e) => Ok(e),
|
||||
Err(()) => Err(timeout("wait timed out")),
|
||||
};
|
||||
|
||||
// Register a new SIGCHLD handler, returning the reading half of the
|
||||
// self-pipe plus the old handler registered (return value of sigaction).
|
||||
//
|
||||
// Be sure to set up the self-pipe first because as soon as we register a
|
||||
// handler we're going to start receiving signals.
|
||||
fn register_sigchld() -> (libc::c_int, c::sigaction) {
|
||||
unsafe {
|
||||
let mut pipes = [0, ..2];
|
||||
assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0);
|
||||
set_nonblocking(pipes[0], true).ok().unwrap();
|
||||
set_nonblocking(pipes[1], true).ok().unwrap();
|
||||
WRITE_FD = pipes[1];
|
||||
|
||||
let mut old: c::sigaction = mem::zeroed();
|
||||
let mut new: c::sigaction = mem::zeroed();
|
||||
new.sa_handler = sigchld_handler;
|
||||
new.sa_flags = c::SA_NOCLDSTOP;
|
||||
assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0);
|
||||
(pipes[0], old)
|
||||
}
|
||||
}
|
||||
|
||||
// Helper thread for processing SIGCHLD messages
|
||||
fn waitpid_helper(input: libc::c_int,
|
||||
messages: Receiver<Req>,
|
||||
(read_fd, old): (libc::c_int, c::sigaction)) {
|
||||
set_nonblocking(input, true).ok().unwrap();
|
||||
let mut set: c::fd_set = unsafe { mem::zeroed() };
|
||||
let mut tv: libc::timeval;
|
||||
let mut active = Vec::<(libc::pid_t, Sender<ProcessExit>, u64)>::new();
|
||||
let max = cmp::max(input, read_fd) + 1;
|
||||
|
||||
'outer: loop {
|
||||
// Figure out the timeout of our syscall-to-happen. If we're waiting
|
||||
// for some processes, then they'll have a timeout, otherwise we
|
||||
// wait indefinitely for a message to arrive.
|
||||
//
|
||||
// FIXME: sure would be nice to not have to scan the entire array
|
||||
let min = active.iter().map(|a| *a.ref2()).enumerate().min_by(|p| {
|
||||
p.val1()
|
||||
});
|
||||
let (p, idx) = match min {
|
||||
Some((idx, deadline)) => {
|
||||
let now = sys::timer::now();
|
||||
let ms = if now < deadline {deadline - now} else {0};
|
||||
tv = ms_to_timeval(ms);
|
||||
(&mut tv as *mut _, idx)
|
||||
}
|
||||
None => (ptr::null_mut(), -1),
|
||||
};
|
||||
|
||||
// Wait for something to happen
|
||||
c::fd_set(&mut set, input);
|
||||
c::fd_set(&mut set, read_fd);
|
||||
match unsafe { c::select(max, &mut set, ptr::null_mut(),
|
||||
ptr::null_mut(), p) } {
|
||||
// interrupted, retry
|
||||
-1 if os::errno() == libc::EINTR as uint => continue,
|
||||
|
||||
// We read something, break out and process
|
||||
1 | 2 => {}
|
||||
|
||||
// Timeout, the pending request is removed
|
||||
0 => {
|
||||
drop(active.remove(idx));
|
||||
continue
|
||||
}
|
||||
|
||||
n => panic!("error in select {} ({})", os::errno(), n),
|
||||
}
|
||||
|
||||
// Process any pending messages
|
||||
if drain(input) {
|
||||
loop {
|
||||
match messages.try_recv() {
|
||||
Ok(NewChild(pid, tx, deadline)) => {
|
||||
active.push((pid, tx, deadline));
|
||||
}
|
||||
Err(comm::Disconnected) => {
|
||||
assert!(active.len() == 0);
|
||||
break 'outer;
|
||||
}
|
||||
Err(comm::Empty) => break,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If a child exited (somehow received SIGCHLD), then poll all
|
||||
// children to see if any of them exited.
|
||||
//
|
||||
// We also attempt to be responsible netizens when dealing with
|
||||
// SIGCHLD by invoking any previous SIGCHLD handler instead of just
|
||||
// ignoring any previous SIGCHLD handler. Note that we don't provide
|
||||
// a 1:1 mapping of our handler invocations to the previous handler
|
||||
// invocations because we drain the `read_fd` entirely. This is
|
||||
// probably OK because the kernel is already allowed to coalesce
|
||||
// simultaneous signals, we're just doing some extra coalescing.
|
||||
//
|
||||
// Another point of note is that this likely runs the signal handler
|
||||
// on a different thread than the one that received the signal. I
|
||||
// *think* this is ok at this time.
|
||||
//
|
||||
// The main reason for doing this is to allow stdtest to run native
|
||||
// tests as well. Both libgreen and libnative are running around
|
||||
// with process timeouts, but libgreen should get there first
|
||||
// (currently libuv doesn't handle old signal handlers).
|
||||
if drain(read_fd) {
|
||||
let i: uint = unsafe { mem::transmute(old.sa_handler) };
|
||||
if i != 0 {
|
||||
assert!(old.sa_flags & c::SA_SIGINFO == 0);
|
||||
(old.sa_handler)(c::SIGCHLD);
|
||||
}
|
||||
|
||||
// FIXME: sure would be nice to not have to scan the entire
|
||||
// array...
|
||||
active.retain(|&(pid, ref tx, _)| {
|
||||
let pr = Process { pid: pid };
|
||||
match pr.try_wait() {
|
||||
Some(msg) => { tx.send(msg); false }
|
||||
None => true,
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Once this helper thread is done, we re-register the old sigchld
|
||||
// handler and close our intermediate file descriptors.
|
||||
unsafe {
|
||||
assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0);
|
||||
let _ = libc::close(read_fd);
|
||||
let _ = libc::close(WRITE_FD);
|
||||
WRITE_FD = -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Drain all pending data from the file descriptor, returning if any data
|
||||
// could be drained. This requires that the file descriptor is in
|
||||
// nonblocking mode.
|
||||
fn drain(fd: libc::c_int) -> bool {
|
||||
let mut ret = false;
|
||||
loop {
|
||||
let mut buf = [0u8, ..1];
|
||||
match unsafe {
|
||||
libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void,
|
||||
buf.len() as libc::size_t)
|
||||
} {
|
||||
n if n > 0 => { ret = true; }
|
||||
0 => return true,
|
||||
-1 if wouldblock() => return ret,
|
||||
n => panic!("bad read {} ({})", os::last_os_error(), n),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Signal handler for SIGCHLD signals, must be async-signal-safe!
|
||||
//
|
||||
// This function will write to the writing half of the "self pipe" to wake
|
||||
// up the helper thread if it's waiting. Note that this write must be
|
||||
// nonblocking because if it blocks and the reader is the thread we
|
||||
// interrupted, then we'll deadlock.
|
||||
//
|
||||
// When writing, if the write returns EWOULDBLOCK then we choose to ignore
|
||||
// it. At that point we're guaranteed that there's something in the pipe
|
||||
// which will wake up the other end at some point, so we just allow this
|
||||
// signal to be coalesced with the pending signals on the pipe.
|
||||
extern fn sigchld_handler(_signum: libc::c_int) {
|
||||
let msg = 1i;
|
||||
match unsafe {
|
||||
libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1)
|
||||
} {
|
||||
1 => {}
|
||||
-1 if wouldblock() => {} // see above comments
|
||||
n => panic!("bad error on write fd: {} {}", n, os::errno()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn try_wait(&self) -> Option<ProcessExit> {
|
||||
let mut status = 0 as c_int;
|
||||
match retry(|| unsafe {
|
||||
c::waitpid(self.pid, &mut status, c::WNOHANG)
|
||||
}) {
|
||||
n if n == self.pid => Some(translate_status(status)),
|
||||
0 => None,
|
||||
n => panic!("unknown waitpid error `{}`: {}", n,
|
||||
super::last_error()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn with_argv<T>(prog: &CString, args: &[CString],
|
||||
cb: proc(*const *const libc::c_char) -> T) -> T {
|
||||
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
|
||||
|
||||
// Convert the CStrings into an array of pointers. Note: the
|
||||
// lifetime of the various CStrings involved is guaranteed to be
|
||||
// larger than the lifetime of our invocation of cb, but this is
|
||||
// technically unsafe as the callback could leak these pointers
|
||||
// out of our scope.
|
||||
ptrs.push(prog.as_ptr());
|
||||
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
|
||||
|
||||
// Add a terminating null pointer (required by libc).
|
||||
ptrs.push(ptr::null());
|
||||
|
||||
cb(ptrs.as_ptr())
|
||||
}
|
||||
|
||||
fn with_envp<K, V, T>(env: Option<&collections::HashMap<K, V>>,
|
||||
cb: proc(*const c_void) -> T) -> T
|
||||
where K: BytesContainer + Eq + Hash, V: BytesContainer
|
||||
{
|
||||
// On posixy systems we can pass a char** for envp, which is a
|
||||
// null-terminated array of "k=v\0" strings. Since we must create
|
||||
// these strings locally, yet expose a raw pointer to them, we
|
||||
// create a temporary vector to own the CStrings that outlives the
|
||||
// call to cb.
|
||||
match env {
|
||||
Some(env) => {
|
||||
let mut tmps = Vec::with_capacity(env.len());
|
||||
|
||||
for pair in env.iter() {
|
||||
let mut kv = Vec::new();
|
||||
kv.push_all(pair.ref0().container_as_bytes());
|
||||
kv.push('=' as u8);
|
||||
kv.push_all(pair.ref1().container_as_bytes());
|
||||
kv.push(0); // terminating null
|
||||
tmps.push(kv);
|
||||
}
|
||||
|
||||
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
|
||||
let mut ptrs: Vec<*const libc::c_char> =
|
||||
tmps.iter()
|
||||
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
|
||||
.collect();
|
||||
ptrs.push(ptr::null());
|
||||
|
||||
cb(ptrs.as_ptr() as *const c_void)
|
||||
}
|
||||
_ => cb(ptr::null())
|
||||
}
|
||||
}
|
||||
|
||||
fn translate_status(status: c_int) -> ProcessExit {
|
||||
#![allow(non_snake_case)]
|
||||
#[cfg(any(target_os = "linux", target_os = "android"))]
|
||||
mod imp {
|
||||
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
|
||||
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
|
||||
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
|
||||
}
|
||||
|
||||
#[cfg(any(target_os = "macos",
|
||||
target_os = "ios",
|
||||
target_os = "freebsd",
|
||||
target_os = "dragonfly"))]
|
||||
mod imp {
|
||||
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
|
||||
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
|
||||
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
|
||||
}
|
||||
|
||||
if imp::WIFEXITED(status) {
|
||||
ExitStatus(imp::WEXITSTATUS(status) as int)
|
||||
} else {
|
||||
ExitSignal(imp::WTERMSIG(status) as int)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user