Files
rust/src/librustc/ty/sty.rs

1255 lines
40 KiB
Rust
Raw Normal View History

2015-09-06 21:51:58 +03:00
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains TypeVariants and its major components
use middle::cstore;
use hir::def_id::DefId;
2015-09-06 21:51:58 +03:00
use middle::region;
use ty::subst::{self, Substs};
use ty::{self, AdtDef, ToPredicate, TypeFlags, Ty, TyCtxt, TyS, TypeFoldable};
2015-09-06 21:51:58 +03:00
use util::common::ErrorReported;
use collections::enum_set::{self, EnumSet, CLike};
use std::fmt;
use std::ops;
use std::mem;
use syntax::abi;
use syntax::ast::{self, Name};
use syntax::parse::token::keywords;
2015-09-06 21:51:58 +03:00
use serialize::{Decodable, Decoder, Encodable, Encoder};
2016-03-29 08:50:44 +03:00
use hir;
2015-09-06 21:51:58 +03:00
use self::FnOutput::*;
use self::InferTy::*;
use self::TypeVariants::*;
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct TypeAndMut<'tcx> {
pub ty: Ty<'tcx>,
pub mutbl: hir::Mutability,
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
RustcEncodable, RustcDecodable, Copy)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
pub scope: region::CodeExtent,
pub bound_region: BoundRegion
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash,
RustcEncodable, RustcDecodable, Copy)]
pub enum BoundRegion {
/// An anonymous region parameter for a given fn (&T)
BrAnon(u32),
/// Named region parameters for functions (a in &'a T)
///
/// The def-id is needed to distinguish free regions in
/// the event of shadowing.
BrNamed(DefId, Name, Issue32330),
2015-09-06 21:51:58 +03:00
/// Fresh bound identifiers created during GLB computations.
BrFresh(u32),
// Anonymous region for the implicit env pointer parameter
// to a closure
BrEnv
}
/// True if this late-bound region is unconstrained, and hence will
/// become early-bound once #32330 is fixed.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub enum Issue32330 {
WontChange,
/// this region will change from late-bound to early-bound once
/// #32330 is fixed.
WillChange {
/// fn where is region declared
fn_def_id: DefId,
/// name of region; duplicates the info in BrNamed but convenient
/// to have it here, and this code is only temporary
region_name: ast::Name,
}
}
2015-09-06 21:51:58 +03:00
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum TypeVariants<'tcx> {
/// The primitive boolean type. Written as `bool`.
TyBool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
TyChar,
/// A primitive signed integer type. For example, `i32`.
TyInt(ast::IntTy),
2015-09-06 21:51:58 +03:00
/// A primitive unsigned integer type. For example, `u32`.
TyUint(ast::UintTy),
2015-09-06 21:51:58 +03:00
/// A primitive floating-point type. For example, `f64`.
TyFloat(ast::FloatTy),
2015-09-06 21:51:58 +03:00
/// An enumerated type, defined with `enum`.
///
/// Substs here, possibly against intuition, *may* contain `TyParam`s.
/// That is, even after substitution it is possible that there are type
/// variables. This happens when the `TyEnum` corresponds to an enum
/// definition and not a concrete use of it. This is true for `TyStruct`
/// as well.
2015-09-06 21:51:58 +03:00
TyEnum(AdtDef<'tcx>, &'tcx Substs<'tcx>),
/// A structure type, defined with `struct`.
///
/// See warning about substitutions for enumerated types.
TyStruct(AdtDef<'tcx>, &'tcx Substs<'tcx>),
/// `Box<T>`; this is nominally a struct in the documentation, but is
/// special-cased internally. For example, it is possible to implicitly
/// move the contents of a box out of that box, and methods of any type
/// can have type `Box<Self>`.
TyBox(Ty<'tcx>),
/// The pointee of a string slice. Written as `str`.
TyStr,
/// An array with the given length. Written as `[T; n]`.
TyArray(Ty<'tcx>, usize),
/// The pointee of an array slice. Written as `[T]`.
TySlice(Ty<'tcx>),
/// A raw pointer. Written as `*mut T` or `*const T`
TyRawPtr(TypeAndMut<'tcx>),
/// A reference; a pointer with an associated lifetime. Written as
/// `&a mut T` or `&'a T`.
TyRef(&'tcx Region, TypeAndMut<'tcx>),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type.
TyFnDef(DefId, &'tcx Substs<'tcx>, &'tcx BareFnTy<'tcx>),
/// A pointer to a function. Written as `fn() -> i32`.
/// FIXME: This is currently also used to represent the callee of a method;
/// see ty::MethodCallee etc.
TyFnPtr(&'tcx BareFnTy<'tcx>),
2015-09-06 21:51:58 +03:00
/// A trait, defined with `trait`.
TyTrait(Box<TraitTy<'tcx>>),
/// The anonymous type of a closure. Used to represent the type of
/// `|a| a`.
TyClosure(DefId, ClosureSubsts<'tcx>),
2015-09-06 21:51:58 +03:00
/// A tuple type. For example, `(i32, bool)`.
TyTuple(&'tcx [Ty<'tcx>]),
2015-09-06 21:51:58 +03:00
/// The projection of an associated type. For example,
/// `<T as Trait<..>>::N`.
TyProjection(ProjectionTy<'tcx>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
TyParam(ParamTy),
/// A type variable used during type-checking.
TyInfer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
TyError,
}
/// A closure can be modeled as a struct that looks like:
///
/// struct Closure<'l0...'li, T0...Tj, U0...Uk> {
/// upvar0: U0,
/// ...
/// upvark: Uk
/// }
///
/// where 'l0...'li and T0...Tj are the lifetime and type parameters
/// in scope on the function that defined the closure, and U0...Uk are
/// type parameters representing the types of its upvars (borrowed, if
/// appropriate).
///
/// So, for example, given this function:
///
/// fn foo<'a, T>(data: &'a mut T) {
/// do(|| data.count += 1)
/// }
///
/// the type of the closure would be something like:
///
/// struct Closure<'a, T, U0> {
/// data: U0
/// }
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
/// impl<'b, 'a, T> FnMut() for Closure<'a, T, &'b mut &'a mut T> {
/// ...
/// }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// as extra type parameters? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the extent of the closure itself; this is some
/// subset of `foo`, probably just the extent of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that trans may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
2015-09-06 21:51:58 +03:00
pub struct ClosureSubsts<'tcx> {
/// Lifetime and type parameters from the enclosing function.
/// These are separated out because trans wants to pass them around
/// when monomorphizing.
pub func_substs: &'tcx Substs<'tcx>,
/// The types of the upvars. The list parallels the freevars and
/// `upvar_borrows` lists. These are kept distinct so that we can
/// easily index into them.
pub upvar_tys: &'tcx [Ty<'tcx>]
2015-09-06 21:51:58 +03:00
}
impl<'tcx> Encodable for ClosureSubsts<'tcx> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(self.func_substs, self.upvar_tys).encode(s)
}
}
impl<'tcx> Decodable for ClosureSubsts<'tcx> {
fn decode<D: Decoder>(d: &mut D) -> Result<ClosureSubsts<'tcx>, D::Error> {
let (func_substs, upvar_tys) = Decodable::decode(d)?;
cstore::tls::with_decoding_context(d, |dcx, _| {
Ok(ClosureSubsts {
func_substs: func_substs,
upvar_tys: dcx.tcx().mk_type_list(upvar_tys)
})
})
}
}
2015-09-06 21:51:58 +03:00
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct TraitTy<'tcx> {
pub principal: ty::PolyTraitRef<'tcx>,
pub bounds: ExistentialBounds<'tcx>,
}
impl<'a, 'gcx, 'tcx> TraitTy<'tcx> {
2015-09-06 21:51:58 +03:00
pub fn principal_def_id(&self) -> DefId {
self.principal.0.def_id
}
/// Object types don't have a self-type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self-type. A common choice is `mk_err()`
/// or some skolemized type.
pub fn principal_trait_ref_with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
2015-09-06 21:51:58 +03:00
self_ty: Ty<'tcx>)
-> ty::PolyTraitRef<'tcx>
{
// otherwise the escaping regions would be captured by the binder
assert!(!self_ty.has_escaping_regions());
ty::Binder(TraitRef {
def_id: self.principal.0.def_id,
substs: tcx.mk_substs(self.principal.0.substs.with_self_ty(self_ty)),
})
}
pub fn projection_bounds_with_self_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
2015-09-06 21:51:58 +03:00
self_ty: Ty<'tcx>)
-> Vec<ty::PolyProjectionPredicate<'tcx>>
{
// otherwise the escaping regions would be captured by the binders
assert!(!self_ty.has_escaping_regions());
self.bounds.projection_bounds.iter()
.map(|in_poly_projection_predicate| {
let in_projection_ty = &in_poly_projection_predicate.0.projection_ty;
let substs = tcx.mk_substs(in_projection_ty.trait_ref.substs.with_self_ty(self_ty));
let trait_ref = ty::TraitRef::new(in_projection_ty.trait_ref.def_id,
substs);
let projection_ty = ty::ProjectionTy {
trait_ref: trait_ref,
item_name: in_projection_ty.item_name
};
ty::Binder(ty::ProjectionPredicate {
projection_ty: projection_ty,
ty: in_poly_projection_predicate.0.ty
})
})
.collect()
}
}
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where clause:
///
/// T : Foo<U>
///
/// This would be represented by a trait-reference where the def-id is the
/// def-id for the trait `Foo` and the substs defines `T` as parameter 0 in the
/// `SelfSpace` and `U` as parameter 0 in the `TypeSpace`.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
///
/// Note that a `TraitRef` introduces a level of region binding, to
/// account for higher-ranked trait bounds like `T : for<'a> Foo<&'a
/// U>` or higher-ranked object types.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct TraitRef<'tcx> {
pub def_id: DefId,
pub substs: &'tcx Substs<'tcx>,
}
pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;
impl<'tcx> PolyTraitRef<'tcx> {
pub fn self_ty(&self) -> Ty<'tcx> {
self.0.self_ty()
}
pub fn def_id(&self) -> DefId {
self.0.def_id
}
pub fn substs(&self) -> &'tcx Substs<'tcx> {
// FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
self.0.substs
}
pub fn input_types(&self) -> &[Ty<'tcx>] {
// FIXME(#20664) every use of this fn is probably a bug, it should yield Binder<>
self.0.input_types()
}
pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
// Note that we preserve binding levels
Binder(ty::TraitPredicate { trait_ref: self.0.clone() })
}
}
/// Binder is a binder for higher-ranked lifetimes. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we skolemize, instantiate,
/// erase, or otherwise "discharge" these bound regions, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g. `liberate_late_bound_regions`).
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Binder<T>(pub T);
impl<T> Binder<T> {
/// Skips the binder and returns the "bound" value. This is a
/// risky thing to do because it's easy to get confused about
/// debruijn indices and the like. It is usually better to
/// discharge the binder using `no_late_bound_regions` or
/// `replace_late_bound_regions` or something like
/// that. `skip_binder` is only valid when you are either
/// extracting data that has nothing to do with bound regions, you
/// are doing some sort of test that does not involve bound
/// regions, or you are being very careful about your depth
/// accounting.
///
/// Some examples where `skip_binder` is reasonable:
/// - extracting the def-id from a PolyTraitRef;
/// - comparing the self type of a PolyTraitRef to see if it is equal to
/// a type parameter `X`, since the type `X` does not reference any regions
pub fn skip_binder(&self) -> &T {
&self.0
}
pub fn as_ref(&self) -> Binder<&T> {
ty::Binder(&self.0)
}
pub fn map_bound_ref<F,U>(&self, f: F) -> Binder<U>
where F: FnOnce(&T) -> U
{
self.as_ref().map_bound(f)
}
pub fn map_bound<F,U>(self, f: F) -> Binder<U>
where F: FnOnce(T) -> U
{
ty::Binder(f(self.0))
}
}
impl fmt::Debug for TypeFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.bits)
}
}
/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct ProjectionTy<'tcx> {
/// The trait reference `T as Trait<..>`.
pub trait_ref: ty::TraitRef<'tcx>,
/// The name `N` of the associated type.
pub item_name: Name,
}
impl<'tcx> ProjectionTy<'tcx> {
pub fn sort_key(&self) -> (DefId, Name) {
(self.trait_ref.def_id, self.item_name)
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct BareFnTy<'tcx> {
pub unsafety: hir::Unsafety,
pub abi: abi::Abi,
pub sig: PolyFnSig<'tcx>,
}
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct ClosureTy<'tcx> {
pub unsafety: hir::Unsafety,
pub abi: abi::Abi,
pub sig: PolyFnSig<'tcx>,
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2015-09-06 21:51:58 +03:00
pub enum FnOutput<'tcx> {
FnConverging(Ty<'tcx>),
FnDiverging
}
impl<'tcx> FnOutput<'tcx> {
pub fn diverges(&self) -> bool {
*self == FnDiverging
}
pub fn unwrap(self) -> Ty<'tcx> {
match self {
ty::FnConverging(t) => t,
ty::FnDiverging => bug!()
2015-09-06 21:51:58 +03:00
}
}
pub fn unwrap_or(self, def: Ty<'tcx>) -> Ty<'tcx> {
match self {
ty::FnConverging(t) => t,
ty::FnDiverging => def
}
}
}
pub type PolyFnOutput<'tcx> = Binder<FnOutput<'tcx>>;
impl<'tcx> PolyFnOutput<'tcx> {
pub fn diverges(&self) -> bool {
self.0.diverges()
}
}
/// Signature of a function type, which I have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs` is the list of arguments and their modes.
/// - `output` is the return type.
/// - `variadic` indicates whether this is a variadic function. (only true for foreign fns)
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct FnSig<'tcx> {
pub inputs: Vec<Ty<'tcx>>,
pub output: FnOutput<'tcx>,
pub variadic: bool
}
pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;
impl<'tcx> PolyFnSig<'tcx> {
pub fn inputs(&self) -> ty::Binder<Vec<Ty<'tcx>>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs.clone())
}
pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs[index])
}
pub fn output(&self) -> ty::Binder<FnOutput<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.output.clone())
}
pub fn variadic(&self) -> bool {
self.skip_binder().variadic
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct ParamTy {
pub space: subst::ParamSpace,
pub idx: u32,
pub name: Name,
}
impl<'a, 'gcx, 'tcx> ParamTy {
2015-09-14 14:55:56 +03:00
pub fn new(space: subst::ParamSpace,
index: u32,
name: Name)
-> ParamTy {
ParamTy { space: space, idx: index, name: name }
}
pub fn for_self() -> ParamTy {
ParamTy::new(subst::SelfSpace, 0, keywords::SelfType.name())
2015-09-14 14:55:56 +03:00
}
pub fn for_def(def: &ty::TypeParameterDef) -> ParamTy {
ParamTy::new(def.space, def.index, def.name)
}
pub fn to_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
2015-09-14 14:55:56 +03:00
tcx.mk_param(self.space, self.idx, self.name)
}
pub fn is_self(&self) -> bool {
self.space == subst::SelfSpace && self.idx == 0
}
}
2015-09-06 21:51:58 +03:00
/// A [De Bruijn index][dbi] is a standard means of representing
/// regions (and perhaps later types) in a higher-ranked setting. In
/// particular, imagine a type like this:
///
/// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
/// ^ ^ | | |
/// | | | | |
/// | +------------+ 1 | |
/// | | |
/// +--------------------------------+ 2 |
/// | |
/// +------------------------------------------+ 1
///
/// In this type, there are two binders (the outer fn and the inner
/// fn). We need to be able to determine, for any given region, which
/// fn type it is bound by, the inner or the outer one. There are
/// various ways you can do this, but a De Bruijn index is one of the
/// more convenient and has some nice properties. The basic idea is to
/// count the number of binders, inside out. Some examples should help
/// clarify what I mean.
///
/// Let's start with the reference type `&'b isize` that is the first
/// argument to the inner function. This region `'b` is assigned a De
/// Bruijn index of 1, meaning "the innermost binder" (in this case, a
/// fn). The region `'a` that appears in the second argument type (`&'a
/// isize`) would then be assigned a De Bruijn index of 2, meaning "the
/// second-innermost binder". (These indices are written on the arrays
/// in the diagram).
///
/// What is interesting is that De Bruijn index attached to a particular
/// variable will vary depending on where it appears. For example,
/// the final type `&'a char` also refers to the region `'a` declared on
/// the outermost fn. But this time, this reference is not nested within
/// any other binders (i.e., it is not an argument to the inner fn, but
/// rather the outer one). Therefore, in this case, it is assigned a
/// De Bruijn index of 1, because the innermost binder in that location
/// is the outer fn.
///
/// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, Copy)]
pub struct DebruijnIndex {
// We maintain the invariant that this is never 0. So 1 indicates
// the innermost binder. To ensure this, create with `DebruijnIndex::new`.
pub depth: u32,
}
/// Representation of regions.
///
/// Unlike types, most region variants are "fictitious", not concrete,
/// regions. Among these, `ReStatic`, `ReEmpty` and `ReScope` are the only
/// ones representing concrete regions.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are 2 kind of
/// bound regions: early-bound, which are bound in a TypeScheme/TraitDef,
/// and are substituted by a Substs, and late-bound, which are part of
/// higher-ranked types (e.g. `for<'a> fn(&'a ())`) and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike TyParam-s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g. in types passed to type inference, and
/// should first be substituted (by skolemized regions, free regions,
/// or region variables).
///
/// ## Skolemized and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// The process of doing that is called "skolemization". The bound regions
/// are replaced by skolemized markers, which don't satisfy any relation
/// not explicity provided.
///
/// There are 2 kinds of skolemized regions in rustc: `ReFree` and
/// `ReSkolemized`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
2015-09-06 21:51:58 +03:00
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `ReSkolemized` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your skolemized region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a skolemized region `'%a`, the variable `'_` would just be
/// instantiated to the skolemized region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the skolemized region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by infer/higher_ranked/README.md.
///
/// [1] http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2] http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
#[derive(Clone, PartialEq, Eq, Hash, Copy, RustcEncodable, RustcDecodable)]
2015-09-06 21:51:58 +03:00
pub enum Region {
// Region bound in a type or fn declaration which will be
// substituted 'early' -- that is, at the same time when type
// parameters are substituted.
ReEarlyBound(EarlyBoundRegion),
// Region bound in a function scope, which will be substituted when the
// function is called.
ReLateBound(DebruijnIndex, BoundRegion),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
ReFree(FreeRegion),
/// A concrete region naming some statically determined extent
/// (e.g. an expression or sequence of statements) within the
/// current function.
ReScope(region::CodeExtent),
/// Static data that has an "infinite" lifetime. Top in the region lattice.
ReStatic,
/// A region variable. Should not exist after typeck.
ReVar(RegionVid),
/// A skolemized region - basically the higher-ranked version of ReFree.
/// Should not exist after typeck.
ReSkolemized(SkolemizedRegionVid, BoundRegion),
/// Empty lifetime is for data that is never accessed.
/// Bottom in the region lattice. We treat ReEmpty somewhat
/// specially; at least right now, we do not generate instances of
/// it during the GLB computations, but rather
/// generate an error instead. This is to improve error messages.
/// The only way to get an instance of ReEmpty is to have a region
/// variable with no constraints.
ReEmpty,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub struct EarlyBoundRegion {
pub space: subst::ParamSpace,
pub index: u32,
pub name: Name,
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct TyVid {
2016-05-21 05:43:13 -04:00
pub index: u32,
2015-09-06 21:51:58 +03:00
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct IntVid {
pub index: u32
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct FloatVid {
pub index: u32
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct RegionVid {
pub index: u32
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
2015-09-06 21:51:58 +03:00
pub struct SkolemizedRegionVid {
pub index: u32
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum InferTy {
TyVar(TyVid),
IntVar(IntVid),
FloatVar(FloatVid),
/// A `FreshTy` is one that is generated as a replacement for an
/// unbound type variable. This is convenient for caching etc. See
/// `infer::freshen` for more details.
2015-09-06 21:51:58 +03:00
FreshTy(u32),
FreshIntTy(u32),
FreshFloatTy(u32)
}
/// Bounds suitable for an existentially quantified type parameter
/// such as those that appear in object types or closure types.
#[derive(PartialEq, Eq, Hash, Clone)]
pub struct ExistentialBounds<'tcx> {
pub region_bound: ty::Region,
pub builtin_bounds: BuiltinBounds,
pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}
impl<'tcx> ExistentialBounds<'tcx> {
pub fn new(region_bound: ty::Region,
builtin_bounds: BuiltinBounds,
projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>)
-> Self {
let mut projection_bounds = projection_bounds;
projection_bounds.sort_by(|a, b| a.sort_key().cmp(&b.sort_key()));
ExistentialBounds {
region_bound: region_bound,
builtin_bounds: builtin_bounds,
projection_bounds: projection_bounds
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct BuiltinBounds(EnumSet<BuiltinBound>);
impl<'a, 'gcx, 'tcx> BuiltinBounds {
2015-09-06 21:51:58 +03:00
pub fn empty() -> BuiltinBounds {
BuiltinBounds(EnumSet::new())
}
pub fn iter(&self) -> enum_set::Iter<BuiltinBound> {
self.into_iter()
}
pub fn to_predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
self_ty: Ty<'tcx>)
-> Vec<ty::Predicate<'tcx>> {
2015-09-06 21:51:58 +03:00
self.iter().filter_map(|builtin_bound|
match tcx.trait_ref_for_builtin_bound(builtin_bound, self_ty) {
2015-09-06 21:51:58 +03:00
Ok(trait_ref) => Some(trait_ref.to_predicate()),
Err(ErrorReported) => { None }
}
).collect()
}
}
impl ops::Deref for BuiltinBounds {
type Target = EnumSet<BuiltinBound>;
fn deref(&self) -> &Self::Target { &self.0 }
}
impl ops::DerefMut for BuiltinBounds {
fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 }
}
impl<'a> IntoIterator for &'a BuiltinBounds {
type Item = BuiltinBound;
type IntoIter = enum_set::Iter<BuiltinBound>;
fn into_iter(self) -> Self::IntoIter {
(**self).into_iter()
}
}
#[derive(Clone, RustcEncodable, PartialEq, Eq, RustcDecodable, Hash,
Debug, Copy)]
#[repr(usize)]
pub enum BuiltinBound {
Send,
Sized,
Copy,
Sync,
}
impl CLike for BuiltinBound {
fn to_usize(&self) -> usize {
*self as usize
}
fn from_usize(v: usize) -> BuiltinBound {
unsafe { mem::transmute(v) }
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn try_add_builtin_trait(self,
2015-09-06 21:51:58 +03:00
trait_def_id: DefId,
builtin_bounds: &mut EnumSet<BuiltinBound>)
-> bool
{
//! Checks whether `trait_ref` refers to one of the builtin
//! traits, like `Send`, and adds the corresponding
//! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
//! is a builtin trait.
match self.lang_items.to_builtin_kind(trait_def_id) {
Some(bound) => { builtin_bounds.insert(bound); true }
None => false
}
}
}
impl DebruijnIndex {
pub fn new(depth: u32) -> DebruijnIndex {
assert!(depth > 0);
DebruijnIndex { depth: depth }
}
pub fn shifted(&self, amount: u32) -> DebruijnIndex {
DebruijnIndex { depth: self.depth + amount }
}
}
// Region utilities
impl Region {
pub fn is_bound(&self) -> bool {
match *self {
ty::ReEarlyBound(..) => true,
ty::ReLateBound(..) => true,
_ => false
}
}
pub fn needs_infer(&self) -> bool {
match *self {
ty::ReVar(..) | ty::ReSkolemized(..) => true,
_ => false
}
}
pub fn escapes_depth(&self, depth: u32) -> bool {
match *self {
ty::ReLateBound(debruijn, _) => debruijn.depth > depth,
_ => false,
}
}
/// Returns the depth of `self` from the (1-based) binding level `depth`
pub fn from_depth(&self, depth: u32) -> Region {
match *self {
ty::ReLateBound(debruijn, r) => ty::ReLateBound(DebruijnIndex {
depth: debruijn.depth - (depth - 1)
}, r),
r => r
}
}
}
// Type utilities
impl<'a, 'gcx, 'tcx> TyS<'tcx> {
2015-09-14 14:55:56 +03:00
pub fn as_opt_param_ty(&self) -> Option<ty::ParamTy> {
match self.sty {
ty::TyParam(ref d) => Some(d.clone()),
_ => None,
}
}
2015-09-06 21:51:58 +03:00
pub fn is_nil(&self) -> bool {
match self.sty {
TyTuple(ref tys) => tys.is_empty(),
_ => false
}
}
pub fn is_empty(&self, _cx: TyCtxt) -> bool {
2015-09-06 21:51:58 +03:00
// FIXME(#24885): be smarter here
match self.sty {
TyEnum(def, _) | TyStruct(def, _) => def.is_empty(),
_ => false
}
}
pub fn is_primitive(&self) -> bool {
match self.sty {
TyBool | TyChar | TyInt(_) | TyUint(_) | TyFloat(_) => true,
_ => false,
}
}
2015-09-06 21:51:58 +03:00
pub fn is_ty_var(&self) -> bool {
match self.sty {
TyInfer(TyVar(_)) => true,
_ => false
}
}
pub fn is_phantom_data(&self) -> bool {
if let TyStruct(def, _) = self.sty {
def.is_phantom_data()
} else {
false
}
}
2015-09-06 21:51:58 +03:00
pub fn is_bool(&self) -> bool { self.sty == TyBool }
2015-09-14 14:55:56 +03:00
pub fn is_param(&self, space: subst::ParamSpace, index: u32) -> bool {
match self.sty {
ty::TyParam(ref data) => data.space == space && data.idx == index,
_ => false,
}
}
2015-09-06 21:51:58 +03:00
pub fn is_self(&self) -> bool {
match self.sty {
TyParam(ref p) => p.space == subst::SelfSpace,
_ => false
}
}
pub fn is_slice(&self) -> bool {
2015-09-06 21:51:58 +03:00
match self.sty {
TyRawPtr(mt) | TyRef(_, mt) => match mt.ty.sty {
TySlice(_) | TyStr => true,
_ => false,
},
_ => false
}
}
pub fn is_structural(&self) -> bool {
match self.sty {
TyStruct(..) | TyTuple(_) | TyEnum(..) |
TyArray(..) | TyClosure(..) => true,
_ => self.is_slice() | self.is_trait()
}
}
#[inline]
pub fn is_simd(&self) -> bool {
match self.sty {
TyStruct(def, _) => def.is_simd(),
_ => false
}
}
pub fn sequence_element_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
2015-09-06 21:51:58 +03:00
match self.sty {
TyArray(ty, _) | TySlice(ty) => ty,
2016-05-03 04:02:41 +03:00
TyStr => tcx.mk_mach_uint(ast::UintTy::U8),
_ => bug!("sequence_element_type called on non-sequence value: {}", self),
2015-09-06 21:51:58 +03:00
}
}
pub fn simd_type(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
2015-09-06 21:51:58 +03:00
match self.sty {
TyStruct(def, substs) => {
2016-05-03 04:02:41 +03:00
def.struct_variant().fields[0].ty(tcx, substs)
2015-09-06 21:51:58 +03:00
}
2016-03-26 19:59:04 +01:00
_ => bug!("simd_type called on invalid type")
2015-09-06 21:51:58 +03:00
}
}
pub fn simd_size(&self, _cx: TyCtxt) -> usize {
2015-09-06 21:51:58 +03:00
match self.sty {
TyStruct(def, _) => def.struct_variant().fields.len(),
2016-03-26 19:59:04 +01:00
_ => bug!("simd_size called on invalid type")
2015-09-06 21:51:58 +03:00
}
}
pub fn is_region_ptr(&self) -> bool {
match self.sty {
TyRef(..) => true,
_ => false
}
}
pub fn is_unsafe_ptr(&self) -> bool {
match self.sty {
TyRawPtr(_) => return true,
_ => return false
}
}
pub fn is_unique(&self) -> bool {
match self.sty {
TyBox(_) => true,
_ => false
}
}
/*
A scalar type is one that denotes an atomic datum, with no sub-components.
(A TyRawPtr is scalar because it represents a non-managed pointer, so its
contents are abstract to rustc.)
*/
pub fn is_scalar(&self) -> bool {
match self.sty {
TyBool | TyChar | TyInt(_) | TyFloat(_) | TyUint(_) |
TyInfer(IntVar(_)) | TyInfer(FloatVar(_)) |
TyFnDef(..) | TyFnPtr(_) | TyRawPtr(_) => true,
2015-09-06 21:51:58 +03:00
_ => false
}
}
/// Returns true if this type is a floating point type and false otherwise.
pub fn is_floating_point(&self) -> bool {
match self.sty {
TyFloat(_) |
TyInfer(FloatVar(_)) => true,
_ => false,
}
}
pub fn is_trait(&self) -> bool {
match self.sty {
TyTrait(..) => true,
_ => false
}
}
pub fn is_integral(&self) -> bool {
match self.sty {
TyInfer(IntVar(_)) | TyInt(_) | TyUint(_) => true,
_ => false
}
}
pub fn is_fresh(&self) -> bool {
match self.sty {
TyInfer(FreshTy(_)) => true,
TyInfer(FreshIntTy(_)) => true,
TyInfer(FreshFloatTy(_)) => true,
_ => false
}
}
pub fn is_uint(&self) -> bool {
match self.sty {
TyInfer(IntVar(_)) | TyUint(ast::UintTy::Us) => true,
2015-09-06 21:51:58 +03:00
_ => false
}
}
pub fn is_char(&self) -> bool {
match self.sty {
TyChar => true,
_ => false
}
}
pub fn is_fp(&self) -> bool {
match self.sty {
TyInfer(FloatVar(_)) | TyFloat(_) => true,
_ => false
}
}
pub fn is_numeric(&self) -> bool {
self.is_integral() || self.is_fp()
}
pub fn is_signed(&self) -> bool {
match self.sty {
TyInt(_) => true,
_ => false
}
}
pub fn is_machine(&self) -> bool {
match self.sty {
TyInt(ast::IntTy::Is) | TyUint(ast::UintTy::Us) => false,
2015-09-06 21:51:58 +03:00
TyInt(..) | TyUint(..) | TyFloat(..) => true,
_ => false
}
}
pub fn has_concrete_skeleton(&self) -> bool {
match self.sty {
TyParam(_) | TyInfer(_) | TyError => false,
_ => true,
}
}
2015-09-06 21:51:58 +03:00
// Returns the type and mutability of *ty.
//
// The parameter `explicit` indicates if this is an *explicit* dereference.
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
pub fn builtin_deref(&self, explicit: bool, pref: ty::LvaluePreference)
-> Option<TypeAndMut<'tcx>>
{
match self.sty {
TyBox(ty) => {
Some(TypeAndMut {
ty: ty,
mutbl: if pref == ty::PreferMutLvalue {
hir::MutMutable
} else {
hir::MutImmutable
},
})
},
TyRef(_, mt) => Some(mt),
TyRawPtr(mt) if explicit => Some(mt),
_ => None
}
}
// Returns the type of ty[i]
pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
match self.sty {
TyArray(ty, _) | TySlice(ty) => Some(ty),
_ => None
}
}
pub fn fn_sig(&self) -> &'tcx PolyFnSig<'tcx> {
match self.sty {
TyFnDef(_, _, ref f) | TyFnPtr(ref f) => &f.sig,
2016-03-26 19:59:04 +01:00
_ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self)
2015-09-06 21:51:58 +03:00
}
}
/// Returns the ABI of the given function.
pub fn fn_abi(&self) -> abi::Abi {
match self.sty {
TyFnDef(_, _, ref f) | TyFnPtr(ref f) => f.abi,
2016-03-26 19:59:04 +01:00
_ => bug!("Ty::fn_abi() called on non-fn type"),
2015-09-06 21:51:58 +03:00
}
}
// Type accessors for substructures of types
pub fn fn_args(&self) -> ty::Binder<Vec<Ty<'tcx>>> {
self.fn_sig().inputs()
}
pub fn fn_ret(&self) -> Binder<FnOutput<'tcx>> {
self.fn_sig().output()
}
pub fn is_fn(&self) -> bool {
match self.sty {
TyFnDef(..) | TyFnPtr(_) => true,
2015-09-06 21:51:58 +03:00
_ => false
}
}
pub fn ty_to_def_id(&self) -> Option<DefId> {
match self.sty {
TyTrait(ref tt) => Some(tt.principal_def_id()),
TyStruct(def, _) |
TyEnum(def, _) => Some(def.did),
TyClosure(id, _) => Some(id),
_ => None
}
}
pub fn ty_adt_def(&self) -> Option<AdtDef<'tcx>> {
match self.sty {
TyStruct(adt, _) | TyEnum(adt, _) => Some(adt),
_ => None
}
}
2015-09-14 14:55:56 +03:00
/// Returns the regions directly referenced from this type (but
/// not types reachable from this type via `walk_tys`). This
/// ignores late-bound regions binders.
pub fn regions(&self) -> Vec<ty::Region> {
match self.sty {
TyRef(region, _) => {
vec![*region]
}
TyTrait(ref obj) => {
let mut v = vec![obj.bounds.region_bound];
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-02 17:31:49 -08:00
v.extend_from_slice(obj.principal.skip_binder()
.substs.regions.as_slice());
2015-09-14 14:55:56 +03:00
v
}
TyEnum(_, substs) |
TyStruct(_, substs) => {
substs.regions.as_slice().to_vec()
2015-09-14 14:55:56 +03:00
}
TyClosure(_, ref substs) => {
substs.func_substs.regions.as_slice().to_vec()
2015-09-14 14:55:56 +03:00
}
TyProjection(ref data) => {
data.trait_ref.substs.regions.as_slice().to_vec()
2015-09-14 14:55:56 +03:00
}
TyFnDef(..) |
TyFnPtr(_) |
2015-09-14 14:55:56 +03:00
TyBool |
TyChar |
TyInt(_) |
TyUint(_) |
TyFloat(_) |
TyBox(_) |
TyStr |
TyArray(_, _) |
TySlice(_) |
TyRawPtr(_) |
TyTuple(_) |
TyParam(_) |
TyInfer(_) |
TyError => {
vec![]
}
}
}
2015-09-06 21:51:58 +03:00
}