Files
rust/src/librustc/traits/project.rs

1178 lines
45 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Code for projecting associated types out of trait references.
use super::elaborate_predicates;
use super::report_overflow_error;
use super::specialization_graph;
use super::translate_substs;
use super::Obligation;
use super::ObligationCause;
use super::PredicateObligation;
use super::SelectionContext;
use super::SelectionError;
use super::VtableClosureData;
use super::VtableImplData;
use super::util;
use middle::def_id::DefId;
use infer::{self, InferOk, TypeOrigin};
use ty::subst::Subst;
use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt};
use ty::fold::{TypeFoldable, TypeFolder};
use syntax::parse::token;
use syntax::ast;
use util::common::FN_OUTPUT_NAME;
use std::rc::Rc;
/// Depending on the stage of compilation, we want projection to be
/// more or less conservative.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ProjectionMode {
/// FIXME (#32205)
/// At coherence-checking time, we're still constructing the
/// specialization graph, and thus we only project project
/// non-`default` associated types that are defined directly in
/// the applicable impl. (This behavior should be improved over
/// time, to allow for successful projections modulo cycles
/// between different impls).
///
/// Here's an example that will fail due to the restriction:
///
/// ```
/// trait Assoc {
/// type Output;
/// }
///
/// impl<T> Assoc for T {
/// type Output = bool;
/// }
///
/// impl Assoc for u8 {} // <- inherits the non-default type from above
///
/// trait Foo {}
/// impl Foo for u32 {}
/// impl Foo for <u8 as Assoc>::Output {} // <- this projection will fail
/// ```
///
/// The projection would succeed if `Output` had been defined
/// directly in the impl for `u8`.
Topmost,
/// At type-checking time, we refuse to project any associated
/// type that is marked `default`. Non-`default` ("final") types
/// are always projected. This is necessary in general for
/// soundness of specialization. However, we *could* allow
/// projections in fully-monomorphic cases. We choose not to,
/// because we prefer for `default type` to force the type
/// definition to be treated abstractly by any consumers of the
/// impl. Concretely, that means that the following example will
/// fail to compile:
///
/// ```
/// trait Assoc {
/// type Output;
/// }
///
/// impl<T> Assoc for T {
/// default type Output = bool;
/// }
///
/// fn main() {
/// let <() as Assoc>::Output = true;
/// }
AnyFinal,
/// At trans time, all projections will succeed.
Any,
}
impl ProjectionMode {
2016-03-08 15:23:52 -08:00
pub fn is_topmost(&self) -> bool {
match *self {
ProjectionMode::Topmost => true,
_ => false,
}
}
2016-03-08 15:23:52 -08:00
pub fn is_any_final(&self) -> bool {
match *self {
ProjectionMode::AnyFinal => true,
_ => false,
}
}
2016-03-08 15:23:52 -08:00
pub fn is_any(&self) -> bool {
match *self {
ProjectionMode::Any => true,
_ => false,
}
}
}
pub type PolyProjectionObligation<'tcx> =
Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
pub type ProjectionObligation<'tcx> =
Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
pub type ProjectionTyObligation<'tcx> =
Obligation<'tcx, ty::ProjectionTy<'tcx>>;
/// When attempting to resolve `<T as TraitRef>::Name` ...
#[derive(Debug)]
pub enum ProjectionTyError<'tcx> {
2014-12-30 08:59:33 -05:00
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
TooManyCandidates,
/// ...an error occurred matching `T : TraitRef`
TraitSelectionError(SelectionError<'tcx>),
}
#[derive(Clone)]
pub struct MismatchedProjectionTypes<'tcx> {
2015-09-06 21:51:58 +03:00
pub err: ty::error::TypeError<'tcx>
}
#[derive(PartialEq, Eq, Debug)]
enum ProjectionTyCandidate<'tcx> {
// from a where-clause in the env or object type
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
// from the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
TraitDef(ty::PolyProjectionPredicate<'tcx>),
// defined in an impl
Impl(VtableImplData<'tcx, PredicateObligation<'tcx>>),
// closure return type
Closure(VtableClosureData<'tcx, PredicateObligation<'tcx>>),
// fn pointer return type
FnPointer(Ty<'tcx>),
}
struct ProjectionTyCandidateSet<'tcx> {
vec: Vec<ProjectionTyCandidate<'tcx>>,
ambiguous: bool
}
/// Evaluates constraints of the form:
///
/// for<...> <T as Trait>::U == V
///
/// If successful, this may result in additional obligations.
pub fn poly_project_and_unify_type<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &PolyProjectionObligation<'tcx>)
-> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>>
{
2015-06-18 20:25:05 +03:00
debug!("poly_project_and_unify_type(obligation={:?})",
obligation);
let infcx = selcx.infcx();
infcx.commit_if_ok(|snapshot| {
let (skol_predicate, skol_map) =
infcx.skolemize_late_bound_regions(&obligation.predicate, snapshot);
let skol_obligation = obligation.with(skol_predicate);
match project_and_unify_type(selcx, &skol_obligation) {
Ok(result) => {
match infcx.leak_check(&skol_map, snapshot) {
Ok(()) => Ok(infcx.plug_leaks(skol_map, snapshot, &result)),
Err(e) => Err(MismatchedProjectionTypes { err: e }),
}
}
Err(e) => {
Err(e)
}
}
})
}
/// Evaluates constraints of the form:
///
/// <T as Trait>::U == V
///
/// If successful, this may result in additional obligations.
2015-01-01 13:15:14 -05:00
fn project_and_unify_type<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionObligation<'tcx>)
-> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>>
{
2015-06-18 20:25:05 +03:00
debug!("project_and_unify_type(obligation={:?})",
obligation);
let Normalized { value: normalized_ty, obligations } =
match opt_normalize_projection_type(selcx,
obligation.predicate.projection_ty.clone(),
obligation.cause.clone(),
obligation.recursion_depth) {
Some(n) => n,
None => {
consider_unification_despite_ambiguity(selcx, obligation);
return Ok(None);
}
};
2015-06-18 20:25:05 +03:00
debug!("project_and_unify_type: normalized_ty={:?} obligations={:?}",
normalized_ty,
obligations);
let infcx = selcx.infcx();
2015-11-25 12:41:09 +01:00
let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
match infer::mk_eqty(infcx, true, origin, normalized_ty, obligation.predicate.ty) {
Ok(InferOk { obligations: inferred_obligations, .. }) => {
// FIXME(#????) propagate obligations
assert!(inferred_obligations.is_empty());
Ok(Some(obligations))
},
Err(err) => Err(MismatchedProjectionTypes { err: err }),
}
}
fn consider_unification_despite_ambiguity<'cx,'tcx>(selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionObligation<'tcx>) {
2015-06-18 20:25:05 +03:00
debug!("consider_unification_despite_ambiguity(obligation={:?})",
obligation);
let def_id = obligation.predicate.projection_ty.trait_ref.def_id;
match selcx.tcx().lang_items.fn_trait_kind(def_id) {
Some(_) => { }
None => { return; }
}
let infcx = selcx.infcx();
let self_ty = obligation.predicate.projection_ty.trait_ref.self_ty();
let self_ty = infcx.shallow_resolve(self_ty);
debug!("consider_unification_despite_ambiguity: self_ty.sty={:?}",
self_ty.sty);
match self_ty.sty {
ty::TyClosure(closure_def_id, ref substs) => {
let closure_typer = selcx.closure_typer();
let closure_type = closure_typer.closure_type(closure_def_id, substs);
let ty::Binder((_, ret_type)) =
util::closure_trait_ref_and_return_type(infcx.tcx,
def_id,
self_ty,
&closure_type.sig,
util::TupleArgumentsFlag::No);
// We don't have to normalize the return type here - this is only
// reached for TyClosure: Fn inputs where the closure kind is
// still unknown, which should only occur in typeck where the
// closure type is already normalized.
let (ret_type, _) =
infcx.replace_late_bound_regions_with_fresh_var(
obligation.cause.span,
infer::AssocTypeProjection(obligation.predicate.projection_ty.item_name),
&ty::Binder(ret_type));
debug!("consider_unification_despite_ambiguity: ret_type={:?}",
2015-06-18 20:25:05 +03:00
ret_type);
2015-11-25 12:41:09 +01:00
let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
let obligation_ty = obligation.predicate.ty;
match infer::mk_eqty(infcx, true, origin, obligation_ty, ret_type) {
Ok(InferOk { obligations, .. }) => {
// FIXME(#????) propagate obligations
assert!(obligations.is_empty());
}
Err(_) => { /* ignore errors */ }
}
}
_ => { }
}
}
/// Normalizes any associated type projections in `value`, replacing
/// them with a fully resolved type where possible. The return value
/// combines the normalized result and any additional obligations that
/// were incurred as result.
pub fn normalize<'a,'b,'tcx,T>(selcx: &'a mut SelectionContext<'b,'tcx>,
cause: ObligationCause<'tcx>,
value: &T)
-> Normalized<'tcx, T>
where T : TypeFoldable<'tcx>
{
2015-01-01 13:15:14 -05:00
normalize_with_depth(selcx, cause, 0, value)
}
/// As `normalize`, but with a custom depth.
2015-01-01 13:15:14 -05:00
pub fn normalize_with_depth<'a,'b,'tcx,T>(selcx: &'a mut SelectionContext<'b,'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
2015-01-01 13:15:14 -05:00
value: &T)
-> Normalized<'tcx, T>
where T : TypeFoldable<'tcx>
2015-01-01 13:15:14 -05:00
{
let mut normalizer = AssociatedTypeNormalizer::new(selcx, cause, depth);
let result = normalizer.fold(value);
Normalized {
value: result,
obligations: normalizer.obligations,
}
}
struct AssociatedTypeNormalizer<'a,'b:'a,'tcx:'b> {
selcx: &'a mut SelectionContext<'b,'tcx>,
cause: ObligationCause<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
depth: usize,
}
impl<'a,'b,'tcx> AssociatedTypeNormalizer<'a,'b,'tcx> {
fn new(selcx: &'a mut SelectionContext<'b,'tcx>,
cause: ObligationCause<'tcx>,
depth: usize)
-> AssociatedTypeNormalizer<'a,'b,'tcx>
{
AssociatedTypeNormalizer {
selcx: selcx,
cause: cause,
obligations: vec!(),
depth: depth,
}
}
fn fold<T:TypeFoldable<'tcx>>(&mut self, value: &T) -> T {
let value = self.selcx.infcx().resolve_type_vars_if_possible(value);
if !value.has_projection_types() {
value.clone()
} else {
value.fold_with(self)
}
}
}
impl<'a,'b,'tcx> TypeFolder<'tcx> for AssociatedTypeNormalizer<'a,'b,'tcx> {
2016-02-29 23:36:51 +00:00
fn tcx(&self) -> &TyCtxt<'tcx> {
self.selcx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
// We don't want to normalize associated types that occur inside of region
// binders, because they may contain bound regions, and we can't cope with that.
//
// Example:
//
// for<'a> fn(<T as Foo<&'a>>::A)
//
// Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
// normalize it when we instantiate those bound regions (which
// should occur eventually).
let ty = ty.super_fold_with(self);
match ty.sty {
ty::TyProjection(ref data) if !data.has_escaping_regions() => { // (*)
// (*) This is kind of hacky -- we need to be able to
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B : Fn(&'a int)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still
// have to renormalize whenever we instantiate a
// binder). It would be better to normalize in a
// binding-aware fashion.
let Normalized { value: ty, obligations } =
normalize_projection_type(self.selcx,
data.clone(),
self.cause.clone(),
self.depth);
self.obligations.extend(obligations);
ty
}
_ => {
ty
}
}
}
}
#[derive(Clone)]
pub struct Normalized<'tcx,T> {
pub value: T,
pub obligations: Vec<PredicateObligation<'tcx>>,
}
pub type NormalizedTy<'tcx> = Normalized<'tcx, Ty<'tcx>>;
impl<'tcx,T> Normalized<'tcx,T> {
pub fn with<U>(self, value: U) -> Normalized<'tcx,U> {
Normalized { value: value, obligations: self.obligations }
}
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// substitute a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a,'b,'tcx>(
selcx: &'a mut SelectionContext<'b,'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize)
-> NormalizedTy<'tcx>
{
opt_normalize_projection_type(selcx, projection_ty.clone(), cause.clone(), depth)
.unwrap_or_else(move || {
// if we bottom out in ambiguity, create a type variable
// and a deferred predicate to resolve this when more type
// information is available.
let ty_var = selcx.infcx().next_ty_var();
let projection = ty::Binder(ty::ProjectionPredicate {
projection_ty: projection_ty,
ty: ty_var
});
let obligation = Obligation::with_depth(
cause, depth + 1, projection.to_predicate());
Normalized {
value: ty_var,
obligations: vec!(obligation)
}
})
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). Returns `None` in the case of ambiguity,
/// which indicates that there are unbound type variables.
fn opt_normalize_projection_type<'a,'b,'tcx>(
selcx: &'a mut SelectionContext<'b,'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize)
-> Option<NormalizedTy<'tcx>>
{
debug!("normalize_projection_type(\
2015-06-18 20:25:05 +03:00
projection_ty={:?}, \
depth={})",
2015-06-18 20:25:05 +03:00
projection_ty,
depth);
let obligation = Obligation::with_depth(cause.clone(), depth, projection_ty.clone());
match project_type(selcx, &obligation) {
Ok(ProjectedTy::Progress(projected_ty, mut obligations)) => {
// if projection succeeded, then what we get out of this
// is also non-normalized (consider: it was derived from
// an impl, where-clause etc) and hence we must
// re-normalize it
2015-06-18 20:25:05 +03:00
debug!("normalize_projection_type: projected_ty={:?} depth={} obligations={:?}",
projected_ty,
2015-01-01 13:15:14 -05:00
depth,
2015-06-18 20:25:05 +03:00
obligations);
if projected_ty.has_projection_types() {
let mut normalizer = AssociatedTypeNormalizer::new(selcx, cause, depth+1);
let normalized_ty = normalizer.fold(&projected_ty);
2015-06-18 20:25:05 +03:00
debug!("normalize_projection_type: normalized_ty={:?} depth={}",
normalized_ty,
depth);
obligations.extend(normalizer.obligations);
Some(Normalized {
value: normalized_ty,
obligations: obligations,
})
} else {
Some(Normalized {
value: projected_ty,
obligations: obligations,
})
}
}
Ok(ProjectedTy::NoProgress(projected_ty)) => {
2015-06-18 20:25:05 +03:00
debug!("normalize_projection_type: projected_ty={:?} no progress",
projected_ty);
Some(Normalized {
value: projected_ty,
obligations: vec!()
})
}
Err(ProjectionTyError::TooManyCandidates) => {
debug!("normalize_projection_type: too many candidates");
None
}
Err(ProjectionTyError::TraitSelectionError(_)) => {
debug!("normalize_projection_type: ERROR");
// if we got an error processing the `T as Trait` part,
// just return `ty::err` but add the obligation `T :
// Trait`, which when processed will cause the error to be
// reported later
Some(normalize_to_error(selcx, projection_ty, cause, depth))
}
}
}
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
/// hold. In various error cases, we cannot generate a valid
/// normalized projection. Therefore, we create an inference variable
/// return an associated obligation that, when fulfilled, will lead to
/// an error.
2015-05-05 22:09:17 +03:00
///
/// Note that we used to return `TyError` here, but that was quite
/// dubious -- the premise was that an error would *eventually* be
/// reported, when the obligation was processed. But in general once
/// you see a `TyError` you are supposed to be able to assume that an
/// error *has been* reported, so that you can take whatever heuristic
/// paths you want to take. To make things worse, it was possible for
/// cycles to arise, where you basically had a setup like `<MyType<$0>
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
/// Trait>::Foo> to `[type error]` would lead to an obligation of
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
/// an error for this obligation, but we legitimately should not,
/// because it contains `[type error]`. Yuck! (See issue #29857 for
/// one case where this arose.)
fn normalize_to_error<'a,'tcx>(selcx: &mut SelectionContext<'a,'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize)
-> NormalizedTy<'tcx>
{
let trait_ref = projection_ty.trait_ref.to_poly_trait_ref();
let trait_obligation = Obligation { cause: cause,
recursion_depth: depth,
predicate: trait_ref.to_predicate() };
let new_value = selcx.infcx().next_ty_var();
Normalized {
value: new_value,
obligations: vec!(trait_obligation)
}
}
enum ProjectedTy<'tcx> {
Progress(Ty<'tcx>, Vec<PredicateObligation<'tcx>>),
NoProgress(Ty<'tcx>),
}
/// Compute the result of a projection type (if we can).
fn project_type<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>)
-> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>>
{
2015-06-18 20:25:05 +03:00
debug!("project(obligation={:?})",
obligation);
let recursion_limit = selcx.tcx().sess.recursion_limit.get();
if obligation.recursion_depth >= recursion_limit {
debug!("project: overflow!");
report_overflow_error(selcx.infcx(), &obligation, true);
}
let obligation_trait_ref =
selcx.infcx().resolve_type_vars_if_possible(&obligation.predicate.trait_ref);
2015-06-18 20:25:05 +03:00
debug!("project: obligation_trait_ref={:?}", obligation_trait_ref);
if obligation_trait_ref.references_error() {
return Ok(ProjectedTy::Progress(selcx.tcx().types.err, vec!()));
}
let mut candidates = ProjectionTyCandidateSet {
vec: Vec::new(),
ambiguous: false,
};
assemble_candidates_from_param_env(selcx,
obligation,
&obligation_trait_ref,
&mut candidates);
assemble_candidates_from_trait_def(selcx,
obligation,
&obligation_trait_ref,
&mut candidates);
if let Err(e) = assemble_candidates_from_impls(selcx,
obligation,
&obligation_trait_ref,
&mut candidates) {
return Err(ProjectionTyError::TraitSelectionError(e));
}
debug!("{} candidates, ambiguous={}",
candidates.vec.len(),
candidates.ambiguous);
// Inherent ambiguity that prevents us from even enumerating the
// candidates.
if candidates.ambiguous {
return Err(ProjectionTyError::TooManyCandidates);
}
// Drop duplicates.
//
// Note: `candidates.vec` seems to be on the critical path of the
// compiler. Replacing it with an hash set was also tried, which would
// render the following dedup unnecessary. It led to cleaner code but
// prolonged compiling time of `librustc` from 5m30s to 6m in one test, or
// ~9% performance lost.
if candidates.vec.len() > 1 {
let mut i = 0;
while i < candidates.vec.len() {
let has_dup = (0..i).any(|j| candidates.vec[i] == candidates.vec[j]);
if has_dup {
candidates.vec.swap_remove(i);
} else {
i += 1;
}
}
}
// Prefer where-clauses. As in select, if there are multiple
// candidates, we prefer where-clause candidates over impls. This
// may seem a bit surprising, since impls are the source of
// "truth" in some sense, but in fact some of the impls that SEEM
// applicable are not, because of nested obligations. Where
// clauses are the safer choice. See the comment on
// `select::SelectionCandidate` and #21974 for more details.
if candidates.vec.len() > 1 {
debug!("retaining param-env candidates only from {:?}", candidates.vec);
candidates.vec.retain(|c| match *c {
ProjectionTyCandidate::ParamEnv(..) => true,
ProjectionTyCandidate::Impl(..) |
ProjectionTyCandidate::Closure(..) |
ProjectionTyCandidate::TraitDef(..) |
ProjectionTyCandidate::FnPointer(..) => false,
});
debug!("resulting candidate set: {:?}", candidates.vec);
if candidates.vec.len() != 1 {
return Err(ProjectionTyError::TooManyCandidates);
}
}
assert!(candidates.vec.len() <= 1);
let possible_candidate = candidates.vec.pop().and_then(|candidate| {
// In Any (i.e. trans) mode, all projections succeed;
// otherwise, we need to be sensitive to `default` and
// specialization.
2016-03-08 15:23:52 -08:00
if !selcx.projection_mode().is_any() {
if let ProjectionTyCandidate::Impl(ref impl_data) = candidate {
if let Some(node_item) = assoc_ty_def(selcx,
impl_data.impl_def_id,
obligation.predicate.item_name) {
if node_item.node.is_from_trait() {
if node_item.item.ty.is_some() {
// If the associated type has a default from the
// trait, that should be considered `default` and
// hence not projected.
//
// Note, however, that we allow a projection from
// the trait specifically in the case that the trait
// does *not* give a default. This is purely to
// avoid spurious errors: the situation can only
// arise when *no* impl in the specialization chain
// has provided a definition for the type. When we
// confirm the candidate, we'll turn the projection
// into a TyError, since the actual error will be
// reported in `check_impl_items_against_trait`.
return None;
}
} else if node_item.item.defaultness.is_default() {
return None;
}
} else {
// Normally this situation could only arise througha
// compiler bug, but at coherence-checking time we only look
// at the topmost impl (we don't even consider the trait
// itself) for the definition -- so we can fail to find a
// definition of the type even if it exists.
// For now, we just unconditionally ICE, because otherwise,
// examples like the following will succeed:
//
// ```
// trait Assoc {
// type Output;
// }
//
// impl<T> Assoc for T {
// default type Output = bool;
// }
//
// impl Assoc for u8 {}
// impl Assoc for u16 {}
//
// trait Foo {}
// impl Foo for <u8 as Assoc>::Output {}
// impl Foo for <u16 as Assoc>::Output {}
// return None;
// }
// ```
//
// The essential problem here is that the projection fails,
// leaving two unnormalized types, which appear not to unify
// -- so the overlap check succeeds, when it should fail.
selcx.tcx().sess.bug("Tried to project an inherited associated type during \
coherence checking, which is currently not supported.");
}
}
}
Some(candidate)
});
match possible_candidate {
Some(candidate) => {
let (ty, obligations) = confirm_candidate(selcx, obligation, candidate);
Ok(ProjectedTy::Progress(ty, obligations))
}
None => {
Ok(ProjectedTy::NoProgress(selcx.tcx().mk_projection(
obligation.predicate.trait_ref.clone(),
obligation.predicate.item_name)))
}
}
}
/// The first thing we have to do is scan through the parameter
/// environment to see whether there are any projection predicates
/// there that can answer this question.
fn assemble_candidates_from_param_env<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
{
debug!("assemble_candidates_from_param_env(..)");
let env_predicates = selcx.param_env().caller_bounds.iter().cloned();
assemble_candidates_from_predicates(selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::ParamEnv,
env_predicates);
}
/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
/// that the definition of `Foo` has some clues:
///
/// ```
/// trait Foo {
/// type FooT : Bar<BarT=i32>
/// }
/// ```
///
/// Here, for example, we could conclude that the result is `i32`.
fn assemble_candidates_from_trait_def<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
{
debug!("assemble_candidates_from_trait_def(..)");
// Check whether the self-type is itself a projection.
let trait_ref = match obligation_trait_ref.self_ty().sty {
ty::TyProjection(ref data) => data.trait_ref.clone(),
ty::TyInfer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
candidate_set.ambiguous = true;
return;
}
_ => { return; }
};
// If so, extract what we know from the trait and try to come up with a good answer.
let trait_predicates = selcx.tcx().lookup_predicates(trait_ref.def_id);
let bounds = trait_predicates.instantiate(selcx.tcx(), trait_ref.substs);
let bounds = elaborate_predicates(selcx.tcx(), bounds.predicates.into_vec());
assemble_candidates_from_predicates(selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::TraitDef,
bounds)
}
fn assemble_candidates_from_predicates<'cx,'tcx,I>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
env_predicates: I)
where I: Iterator<Item=ty::Predicate<'tcx>>
{
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_predicates(obligation={:?})",
obligation);
let infcx = selcx.infcx();
for predicate in env_predicates {
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_predicates: predicate={:?}",
predicate);
match predicate {
ty::Predicate::Projection(ref data) => {
let same_name = data.item_name() == obligation.predicate.item_name;
let is_match = same_name && infcx.probe(|_| {
2015-11-25 12:41:09 +01:00
let origin = TypeOrigin::Misc(obligation.cause.span);
let data_poly_trait_ref =
data.to_poly_trait_ref();
let obligation_poly_trait_ref =
obligation_trait_ref.to_poly_trait_ref();
infcx.sub_poly_trait_refs(false,
origin,
data_poly_trait_ref,
obligation_poly_trait_ref)
// FIXME(#????) propagate obligations
.map(|InferOk { obligations, .. }| assert!(obligations.is_empty()))
.is_ok()
});
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_predicates: candidate={:?} \
is_match={} same_name={}",
data, is_match, same_name);
if is_match {
candidate_set.vec.push(ctor(data.clone()));
}
}
_ => { }
}
}
}
fn assemble_candidates_from_object_type<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
{
let self_ty = obligation_trait_ref.self_ty();
let object_ty = selcx.infcx().shallow_resolve(self_ty);
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_object_type(object_ty={:?})",
object_ty);
let data = match object_ty.sty {
ty::TyTrait(ref data) => data,
_ => {
selcx.tcx().sess.span_bug(
obligation.cause.span,
2015-06-18 20:25:05 +03:00
&format!("assemble_candidates_from_object_type called with non-object: {:?}",
object_ty));
}
};
let projection_bounds = data.projection_bounds_with_self_ty(selcx.tcx(), object_ty);
let env_predicates = projection_bounds.iter()
.map(|p| p.to_predicate())
.collect();
let env_predicates = elaborate_predicates(selcx.tcx(), env_predicates);
assemble_candidates_from_predicates(selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::ParamEnv,
env_predicates)
}
fn assemble_candidates_from_impls<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
// start out by selecting the predicate `T as TraitRef<...>`:
let poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
let vtable = match selcx.select(&trait_obligation) {
Ok(Some(vtable)) => vtable,
Ok(None) => {
candidate_set.ambiguous = true;
return Ok(());
}
Err(e) => {
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_impls: selection error {:?}",
e);
return Err(e);
}
};
match vtable {
super::VtableImpl(data) => {
2015-06-18 20:25:05 +03:00
debug!("assemble_candidates_from_impls: impl candidate {:?}",
data);
candidate_set.vec.push(
ProjectionTyCandidate::Impl(data));
}
super::VtableObject(_) => {
assemble_candidates_from_object_type(
selcx, obligation, obligation_trait_ref, candidate_set);
}
super::VtableClosure(data) => {
candidate_set.vec.push(
ProjectionTyCandidate::Closure(data));
}
super::VtableFnPointer(fn_type) => {
candidate_set.vec.push(
ProjectionTyCandidate::FnPointer(fn_type));
}
super::VtableParam(..) => {
// This case tell us nothing about the value of an
// associated type. Consider:
//
// ```
// trait SomeTrait { type Foo; }
// fn foo<T:SomeTrait>(...) { }
// ```
//
// If the user writes `<T as SomeTrait>::Foo`, then the `T
// : SomeTrait` binding does not help us decide what the
// type `Foo` is (at least, not more specifically than
// what we already knew).
//
// But wait, you say! What about an example like this:
//
// ```
// fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
// ```
//
// Doesn't the `T : Sometrait<Foo=usize>` predicate help
// resolve `T::Foo`? And of course it does, but in fact
// that single predicate is desugared into two predicates
// in the compiler: a trait predicate (`T : SomeTrait`) and a
// projection. And the projection where clause is handled
// in `assemble_candidates_from_param_env`.
}
2015-02-07 14:24:34 +01:00
super::VtableDefaultImpl(..) |
super::VtableBuiltin(..) => {
// These traits have no associated types.
selcx.tcx().sess.span_bug(
obligation.cause.span,
2015-06-18 20:25:05 +03:00
&format!("Cannot project an associated type from `{:?}`",
vtable));
}
}
Ok(())
}
fn confirm_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate: ProjectionTyCandidate<'tcx>)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
2015-06-18 20:25:05 +03:00
debug!("confirm_candidate(candidate={:?}, obligation={:?})",
candidate,
obligation);
match candidate {
ProjectionTyCandidate::ParamEnv(poly_projection) |
ProjectionTyCandidate::TraitDef(poly_projection) => {
confirm_param_env_candidate(selcx, obligation, poly_projection)
}
ProjectionTyCandidate::Impl(impl_vtable) => {
confirm_impl_candidate(selcx, obligation, impl_vtable)
}
ProjectionTyCandidate::Closure(closure_vtable) => {
confirm_closure_candidate(selcx, obligation, closure_vtable)
}
ProjectionTyCandidate::FnPointer(fn_type) => {
confirm_fn_pointer_candidate(selcx, obligation, fn_type)
}
}
}
fn confirm_fn_pointer_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_type: Ty<'tcx>)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
let fn_type = selcx.infcx().shallow_resolve(fn_type);
let sig = fn_type.fn_sig();
confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
}
fn confirm_closure_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
vtable: VtableClosureData<'tcx, PredicateObligation<'tcx>>)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
let closure_typer = selcx.closure_typer();
let closure_type = closure_typer.closure_type(vtable.closure_def_id, &vtable.substs);
let Normalized {
value: closure_type,
mut obligations
} = normalize_with_depth(selcx,
obligation.cause.clone(),
obligation.recursion_depth+1,
&closure_type);
let (ty, mut cc_obligations) = confirm_callable_candidate(selcx,
obligation,
&closure_type.sig,
util::TupleArgumentsFlag::No);
obligations.append(&mut cc_obligations);
(ty, obligations)
}
fn confirm_callable_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_sig: &ty::PolyFnSig<'tcx>,
flag: util::TupleArgumentsFlag)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
let tcx = selcx.tcx();
2015-06-18 20:25:05 +03:00
debug!("confirm_callable_candidate({:?},{:?})",
obligation,
fn_sig);
// the `Output` associated type is declared on `FnOnce`
let fn_once_def_id = tcx.lang_items.fn_once_trait().unwrap();
// Note: we unwrap the binder here but re-create it below (1)
let ty::Binder((trait_ref, ret_type)) =
util::closure_trait_ref_and_return_type(tcx,
fn_once_def_id,
obligation.predicate.trait_ref.self_ty(),
fn_sig,
flag);
let predicate = ty::Binder(ty::ProjectionPredicate { // (1) recreate binder here
projection_ty: ty::ProjectionTy {
trait_ref: trait_ref,
item_name: token::intern(FN_OUTPUT_NAME),
},
ty: ret_type
});
confirm_param_env_candidate(selcx, obligation, predicate)
}
fn confirm_param_env_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
poly_projection: ty::PolyProjectionPredicate<'tcx>)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
let infcx = selcx.infcx();
let projection =
infcx.replace_late_bound_regions_with_fresh_var(
obligation.cause.span,
infer::LateBoundRegionConversionTime::HigherRankedType,
&poly_projection).0;
assert_eq!(projection.projection_ty.item_name,
obligation.predicate.item_name);
2015-11-25 12:41:09 +01:00
let origin = TypeOrigin::RelateOutputImplTypes(obligation.cause.span);
match infcx.eq_trait_refs(false,
origin,
obligation.predicate.trait_ref.clone(),
projection.projection_ty.trait_ref.clone()) {
Ok(InferOk { obligations, .. }) => {
// FIXME(#????) propagate obligations
assert!(obligations.is_empty());
}
Err(e) => {
selcx.tcx().sess.span_bug(
obligation.cause.span,
2015-06-18 20:25:05 +03:00
&format!("Failed to unify `{:?}` and `{:?}` in projection: {}",
obligation,
projection,
e));
}
}
(projection.ty, vec!())
}
fn confirm_impl_candidate<'cx,'tcx>(
selcx: &mut SelectionContext<'cx,'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_vtable: VtableImplData<'tcx, PredicateObligation<'tcx>>)
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
{
let VtableImplData { substs, nested, impl_def_id } = impl_vtable;
let tcx = selcx.tcx();
let trait_ref = obligation.predicate.trait_ref;
let assoc_ty = assoc_ty_def(selcx, impl_def_id, obligation.predicate.item_name);
match assoc_ty {
Some(node_item) => {
let ty = node_item.item.ty.unwrap_or_else(|| {
// This means that the impl is missing a definition for the
// associated type. This error will be reported by the type
// checker method `check_impl_items_against_trait`, so here we
// just return TyError.
debug!("confirm_impl_candidate: no associated type {:?} for {:?}",
node_item.item.name,
obligation.predicate.trait_ref);
tcx.types.err
});
let substs = translate_substs(selcx.infcx(), impl_def_id, substs, node_item.node);
2016-03-11 15:51:35 -08:00
(ty.subst(tcx, substs), nested)
}
None => {
tcx.sess.span_bug(obligation.cause.span,
&format!("No associated type for {:?}", trait_ref));
}
}
}
/// Locate the definition of an associated type in the specialization hierarchy,
/// starting from the given impl.
///
/// Based on the "projection mode", this lookup may in fact only examine the
/// topmost impl. See the comments for `ProjectionMode` for more details.
2016-03-11 15:51:35 -08:00
fn assoc_ty_def<'cx, 'tcx>(selcx: &SelectionContext<'cx, 'tcx>,
impl_def_id: DefId,
assoc_ty_name: ast::Name)
-> Option<specialization_graph::NodeItem<Rc<ty::AssociatedType<'tcx>>>>
{
let trait_def_id = selcx.tcx().impl_trait_ref(impl_def_id).unwrap().def_id;
2016-03-08 15:23:52 -08:00
if selcx.projection_mode().is_topmost() {
let impl_node = specialization_graph::Node::Impl(impl_def_id);
for item in impl_node.items(selcx.tcx()) {
if let ty::TypeTraitItem(assoc_ty) = item {
if assoc_ty.name == assoc_ty_name {
return Some(specialization_graph::NodeItem {
node: specialization_graph::Node::Impl(impl_def_id),
item: assoc_ty,
});
}
}
}
None
} else {
selcx.tcx().lookup_trait_def(trait_def_id)
.ancestors(impl_def_id)
.type_defs(selcx.tcx(), assoc_ty_name)
.next()
}
}