Files
rust/src/libregex/vm.rs

576 lines
20 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// FIXME: Currently, the VM simulates an NFA. It would be nice to have another
// VM that simulates a DFA.
//
// According to Russ Cox[1], a DFA performs better than an NFA, principally
// because it reuses states previously computed by the machine *and* doesn't
// keep track of capture groups. The drawback of a DFA (aside from its
// complexity) is that it can't accurately return the locations of submatches.
// The NFA *can* do that. (This is my understanding anyway.)
//
// Cox suggests that a DFA ought to be used to answer "does this match" and
// "where does it match" questions. (In the latter, the starting position of
// the match is computed by executing the regex backwards.) Cox also suggests
// that a DFA should be run when asking "where are the submatches", which can
// 1) quickly answer "no" is there's no match and 2) discover the substring
// that matches, which means running the NFA on smaller input.
//
// Currently, the NFA simulation implemented below does some dirty tricks to
// avoid tracking capture groups when they aren't needed (which only works
// for 'is_match', not 'find'). This is a half-measure, but does provide some
// perf improvement.
//
// AFAIK, the DFA/NFA approach is implemented in RE2/C++ but *not* in RE2/Go.
//
// [1] - http://swtch.com/~rsc/regex/regex3.html
use std::cmp;
use std::mem;
use std::slice::MutableSlice;
use compile::{
Program,
Match, OneChar, CharClass, Any, EmptyBegin, EmptyEnd, EmptyWordBoundary,
Save, Jump, Split,
};
use parse::{FLAG_NOCASE, FLAG_MULTI, FLAG_DOTNL, FLAG_NEGATED};
Add libunicode; move unicode functions from core - created new crate, libunicode, below libstd - split Char trait into Char (libcore) and UnicodeChar (libunicode) - Unicode-aware functions now live in libunicode - is_alphabetic, is_XID_start, is_XID_continue, is_lowercase, is_uppercase, is_whitespace, is_alphanumeric, is_control, is_digit, to_uppercase, to_lowercase - added width method in UnicodeChar trait - determines printed width of character in columns, or None if it is a non-NULL control character - takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise) - split StrSlice into StrSlice (libcore) and UnicodeStrSlice (libunicode) - functionality formerly in StrSlice that relied upon Unicode functionality from Char is now in UnicodeStrSlice - words, is_whitespace, is_alphanumeric, trim, trim_left, trim_right - also moved Words type alias into libunicode because words method is in UnicodeStrSlice - unified Unicode tables from libcollections, libcore, and libregex into libunicode - updated unicode.py in src/etc to generate aforementioned tables - generated new tables based on latest Unicode data - added UnicodeChar and UnicodeStrSlice traits to prelude - libunicode is now the collection point for the std::char module, combining the libunicode functionality with the Char functionality from libcore - thus, moved doc comment for char from core::char to unicode::char - libcollections remains the collection point for std::str The Unicode-aware functions that previously lived in the Char and StrSlice traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and use the UnicodeChar and/or UnicodeStrSlice traits: extern crate unicode; use unicode::UnicodeChar; use unicode::UnicodeStrSlice; use unicode::Words; // if you want to use the words() method NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude. closes #15224 [breaking-change]
2014-06-30 17:04:10 -04:00
use unicode::regex::PERLW;
pub type CaptureLocs = Vec<Option<uint>>;
/// Indicates the type of match to be performed by the VM.
pub enum MatchKind {
/// Only checks if a match exists or not. Does not return location.
Exists,
/// Returns the start and end indices of the entire match in the input
/// given.
Location,
/// Returns the start and end indices of each submatch in the input given.
Submatches,
}
/// Runs an NFA simulation on the compiled expression given on the search text
/// `input`. The search begins at byte index `start` and ends at byte index
/// `end`. (The range is specified here so that zero-width assertions will work
/// correctly when searching for successive non-overlapping matches.)
///
/// The `which` parameter indicates what kind of capture information the caller
/// wants. There are three choices: match existence only, the location of the
/// entire match or the locations of the entire match in addition to the
/// locations of each submatch.
pub fn run<'r, 't>(which: MatchKind, prog: &'r Program, input: &'t str,
start: uint, end: uint) -> CaptureLocs {
Nfa {
which: which,
prog: prog,
input: input,
start: start,
end: end,
ic: 0,
chars: CharReader::new(input),
}.run()
}
struct Nfa<'r, 't> {
which: MatchKind,
prog: &'r Program,
input: &'t str,
start: uint,
end: uint,
ic: uint,
chars: CharReader<'t>,
}
/// Indicates the next action to take after a single non-empty instruction
/// is processed.
pub enum StepState {
/// This is returned if and only if a Match instruction is reached and
/// we only care about the existence of a match. It instructs the VM to
/// quit early.
StepMatchEarlyReturn,
/// Indicates that a match was found. Thus, the rest of the states in the
/// *current* queue should be dropped (i.e., leftmost-first semantics).
/// States in the "next" queue can still be processed.
StepMatch,
/// No match was found. Continue with the next state in the queue.
StepContinue,
}
impl<'r, 't> Nfa<'r, 't> {
fn run(&mut self) -> CaptureLocs {
let ncaps = match self.which {
Exists => 0,
Location => 1,
Submatches => self.prog.num_captures(),
};
let mut matched = false;
let ninsts = self.prog.insts.len();
let mut clist = &mut Threads::new(self.which, ninsts, ncaps);
let mut nlist = &mut Threads::new(self.which, ninsts, ncaps);
let mut groups = Vec::from_elem(ncaps * 2, None);
// Determine if the expression starts with a '^' so we can avoid
// simulating .*?
// Make sure multi-line mode isn't enabled for it, otherwise we can't
// drop the initial .*?
let prefix_anchor =
2014-07-15 11:37:25 +12:00
match self.prog.insts[1] {
EmptyBegin(flags) if flags & FLAG_MULTI == 0 => true,
_ => false,
};
self.ic = self.start;
let mut next_ic = self.chars.set(self.start);
while self.ic <= self.end {
if clist.size == 0 {
// We have a match and we're done exploring alternatives.
// Time to quit.
if matched {
break
}
// If there are no threads to try, then we'll have to start
// over at the beginning of the regex.
// BUT, if there's a literal prefix for the program, try to
// jump ahead quickly. If it can't be found, then we can bail
// out early.
if self.prog.prefix.len() > 0 && clist.size == 0 {
let needle = self.prog.prefix.as_slice().as_bytes();
let haystack = self.input.as_bytes().slice_from(self.ic);
match find_prefix(needle, haystack) {
None => break,
Some(i) => {
self.ic += i;
next_ic = self.chars.set(self.ic);
}
}
}
}
// This simulates a preceding '.*?' for every regex by adding
// a state starting at the current position in the input for the
// beginning of the program only if we don't already have a match.
if clist.size == 0 || (!prefix_anchor && !matched) {
self.add(clist, 0, groups.as_mut_slice())
}
// Now we try to read the next character.
// As a result, the 'step' method will look at the previous
// character.
self.ic = next_ic;
next_ic = self.chars.advance();
for i in range(0, clist.size) {
let pc = clist.pc(i);
let step_state = self.step(groups.as_mut_slice(), nlist,
clist.groups(i), pc);
match step_state {
StepMatchEarlyReturn => return vec![Some(0), Some(0)],
StepMatch => { matched = true; break },
StepContinue => {},
}
}
mem::swap(&mut clist, &mut nlist);
nlist.empty();
}
match self.which {
Exists if matched => vec![Some(0), Some(0)],
Exists => vec![None, None],
Location | Submatches => groups,
}
}
fn step(&self, groups: &mut [Option<uint>], nlist: &mut Threads,
caps: &mut [Option<uint>], pc: uint)
-> StepState {
2014-07-15 11:37:25 +12:00
match self.prog.insts[pc] {
Match => {
match self.which {
Exists => {
return StepMatchEarlyReturn
}
Location => {
groups[0] = caps[0];
groups[1] = caps[1];
return StepMatch
}
Submatches => {
for (slot, val) in groups.mut_iter().zip(caps.iter()) {
*slot = *val;
}
return StepMatch
}
}
}
OneChar(c, flags) => {
if self.char_eq(flags & FLAG_NOCASE > 0, self.chars.prev, c) {
self.add(nlist, pc+1, caps);
}
}
CharClass(ref ranges, flags) => {
if self.chars.prev.is_some() {
let c = self.chars.prev.unwrap();
let negate = flags & FLAG_NEGATED > 0;
let casei = flags & FLAG_NOCASE > 0;
let found = ranges.as_slice();
let found = found.binary_search(|&rc| class_cmp(casei, c, rc))
.found().is_some();
if found ^ negate {
self.add(nlist, pc+1, caps);
}
}
}
Any(flags) => {
if flags & FLAG_DOTNL > 0
|| !self.char_eq(false, self.chars.prev, '\n') {
self.add(nlist, pc+1, caps)
}
}
EmptyBegin(_) | EmptyEnd(_) | EmptyWordBoundary(_)
| Save(_) | Jump(_) | Split(_, _) => {},
}
StepContinue
}
fn add(&self, nlist: &mut Threads, pc: uint, groups: &mut [Option<uint>]) {
if nlist.contains(pc) {
return
}
// We have to add states to the threads list even if their empty.
// TL;DR - It prevents cycles.
// If we didn't care about cycles, we'd *only* add threads that
// correspond to non-jumping instructions (OneChar, Any, Match, etc.).
// But, it's possible for valid regexs (like '(a*)*') to result in
// a cycle in the instruction list. e.g., We'll keep chasing the Split
// instructions forever.
// So we add these instructions to our thread queue, but in the main
// VM loop, we look for them but simply ignore them.
// Adding them to the queue prevents them from being revisited so we
// can avoid cycles (and the inevitable stack overflow).
//
// We make a minor optimization by indicating that the state is "empty"
// so that its capture groups are not filled in.
2014-07-15 11:37:25 +12:00
match self.prog.insts[pc] {
EmptyBegin(flags) => {
let multi = flags & FLAG_MULTI > 0;
nlist.add(pc, groups, true);
if self.chars.is_begin()
|| (multi && self.char_is(self.chars.prev, '\n')) {
self.add(nlist, pc + 1, groups)
}
}
EmptyEnd(flags) => {
let multi = flags & FLAG_MULTI > 0;
nlist.add(pc, groups, true);
if self.chars.is_end()
|| (multi && self.char_is(self.chars.cur, '\n')) {
self.add(nlist, pc + 1, groups)
}
}
EmptyWordBoundary(flags) => {
nlist.add(pc, groups, true);
if self.chars.is_word_boundary() == !(flags & FLAG_NEGATED > 0) {
self.add(nlist, pc + 1, groups)
}
}
Save(slot) => {
nlist.add(pc, groups, true);
match self.which {
Location if slot <= 1 => {
let old = groups[slot];
groups[slot] = Some(self.ic);
self.add(nlist, pc + 1, groups);
groups[slot] = old;
}
Submatches => {
let old = groups[slot];
groups[slot] = Some(self.ic);
self.add(nlist, pc + 1, groups);
groups[slot] = old;
}
Exists | Location => self.add(nlist, pc + 1, groups),
}
}
Jump(to) => {
nlist.add(pc, groups, true);
self.add(nlist, to, groups)
}
Split(x, y) => {
nlist.add(pc, groups, true);
self.add(nlist, x, groups);
self.add(nlist, y, groups);
}
Match | OneChar(_, _) | CharClass(_, _) | Any(_) => {
nlist.add(pc, groups, false);
}
}
}
// FIXME: For case insensitive comparisons, it uses the uppercase
// character and tests for equality. IIUC, this does not generalize to
// all of Unicode. I believe we need to check the entire fold for each
// character. This will be easy to add if and when it gets added to Rust's
// standard library.
#[inline]
fn char_eq(&self, casei: bool, textc: Option<char>, regc: char) -> bool {
match textc {
None => false,
Some(textc) => {
regc == textc
|| (casei && regc.to_uppercase() == textc.to_uppercase())
}
}
}
#[inline]
fn char_is(&self, textc: Option<char>, regc: char) -> bool {
textc == Some(regc)
}
}
/// CharReader is responsible for maintaining a "previous" and a "current"
/// character. This one-character lookahead is necessary for assertions that
/// look one character before or after the current position.
pub struct CharReader<'t> {
/// The previous character read. It is None only when processing the first
/// character of the input.
pub prev: Option<char>,
/// The current character.
pub cur: Option<char>,
input: &'t str,
next: uint,
}
impl<'t> CharReader<'t> {
/// Returns a new CharReader that advances through the input given.
/// Note that a CharReader has no knowledge of the range in which to search
/// the input.
pub fn new(input: &'t str) -> CharReader<'t> {
CharReader {
prev: None,
cur: None,
input: input,
next: 0,
}
}
/// Sets the previous and current character given any arbitrary byte
/// index (at a Unicode codepoint boundary).
#[inline]
pub fn set(&mut self, ic: uint) -> uint {
self.prev = None;
self.cur = None;
self.next = 0;
if self.input.len() == 0 {
return 1
}
if ic > 0 {
let i = cmp::min(ic, self.input.len());
let prev = self.input.char_range_at_reverse(i);
self.prev = Some(prev.ch);
}
if ic < self.input.len() {
let cur = self.input.char_range_at(ic);
self.cur = Some(cur.ch);
self.next = cur.next;
self.next
} else {
self.input.len() + 1
}
}
/// Does the same as `set`, except it always advances to the next
/// character in the input (and therefore does half as many UTF8 decodings).
#[inline]
pub fn advance(&mut self) -> uint {
self.prev = self.cur;
if self.next < self.input.len() {
let cur = self.input.char_range_at(self.next);
self.cur = Some(cur.ch);
self.next = cur.next;
} else {
self.cur = None;
self.next = self.input.len() + 1;
}
self.next
}
/// Returns true if and only if this is the beginning of the input
/// (ignoring the range of the input to search).
#[inline]
pub fn is_begin(&self) -> bool { self.prev.is_none() }
/// Returns true if and only if this is the end of the input
/// (ignoring the range of the input to search).
#[inline]
pub fn is_end(&self) -> bool { self.cur.is_none() }
/// Returns true if and only if the current position is a word boundary.
/// (Ignoring the range of the input to search.)
pub fn is_word_boundary(&self) -> bool {
if self.is_begin() {
return is_word(self.cur)
}
if self.is_end() {
return is_word(self.prev)
}
(is_word(self.cur) && !is_word(self.prev))
|| (is_word(self.prev) && !is_word(self.cur))
}
}
struct Thread {
pc: uint,
groups: Vec<Option<uint>>,
}
struct Threads {
which: MatchKind,
queue: Vec<Thread>,
sparse: Vec<uint>,
size: uint,
}
impl Threads {
// This is using a wicked neat trick to provide constant time lookup
// for threads in the queue using a sparse set. A queue of threads is
// allocated once with maximal size when the VM initializes and is reused
// throughout execution. That is, there should be zero allocation during
// the execution of a VM.
//
// See http://research.swtch.com/sparse for the deets.
fn new(which: MatchKind, num_insts: uint, ncaps: uint) -> Threads {
Threads {
which: which,
queue: Vec::from_fn(num_insts, |_| {
Thread { pc: 0, groups: Vec::from_elem(ncaps * 2, None) }
}),
sparse: Vec::from_elem(num_insts, 0u),
size: 0,
}
}
fn add(&mut self, pc: uint, groups: &[Option<uint>], empty: bool) {
let t = self.queue.get_mut(self.size);
t.pc = pc;
match (empty, self.which) {
(_, Exists) | (true, _) => {},
(false, Location) => {
*t.groups.get_mut(0) = groups[0];
*t.groups.get_mut(1) = groups[1];
}
(false, Submatches) => {
for (slot, val) in t.groups.mut_iter().zip(groups.iter()) {
*slot = *val;
}
}
}
*self.sparse.get_mut(pc) = self.size;
self.size += 1;
}
#[inline]
fn contains(&self, pc: uint) -> bool {
2014-07-15 11:37:25 +12:00
let s = self.sparse[pc];
s < self.size && self.queue[s].pc == pc
}
#[inline]
fn empty(&mut self) {
self.size = 0;
}
#[inline]
fn pc(&self, i: uint) -> uint {
2014-07-15 11:37:25 +12:00
self.queue[i].pc
}
#[inline]
fn groups<'r>(&'r mut self, i: uint) -> &'r mut [Option<uint>] {
self.queue.get_mut(i).groups.as_mut_slice()
}
}
/// Returns true if the character is a word character, according to the
/// (Unicode friendly) Perl character class '\w'.
/// Note that this is only use for testing word boundaries. The actual '\w'
/// is encoded as a CharClass instruction.
pub fn is_word(c: Option<char>) -> bool {
let c = match c {
None => return false,
Some(c) => c,
};
// Try the common ASCII case before invoking binary search.
match c {
'_' | '0' .. '9' | 'a' .. 'z' | 'A' .. 'Z' => true,
_ => PERLW.binary_search(|&(start, end)| {
if c >= start && c <= end {
Equal
} else if start > c {
Greater
} else {
Less
}
}).found().is_some()
}
}
/// Given a character and a single character class range, return an ordering
/// indicating whether the character is less than the start of the range,
/// in the range (inclusive) or greater than the end of the range.
///
/// If `casei` is `true`, then this ordering is computed case insensitively.
///
/// This function is meant to be used with a binary search.
#[inline]
fn class_cmp(casei: bool, mut textc: char,
(mut start, mut end): (char, char)) -> Ordering {
if casei {
// FIXME: This is pretty ridiculous. All of this case conversion
// can be moved outside this function:
// 1) textc should be uppercased outside the bsearch.
// 2) the character class itself should be uppercased either in the
// parser or the compiler.
// FIXME: This is too simplistic for correct Unicode support.
// See also: char_eq
textc = textc.to_uppercase();
start = start.to_uppercase();
end = end.to_uppercase();
}
if textc >= start && textc <= end {
Equal
} else if start > textc {
Greater
} else {
Less
}
}
/// Returns the starting location of `needle` in `haystack`.
/// If `needle` is not in `haystack`, then `None` is returned.
///
/// Note that this is using a naive substring algorithm.
#[inline]
pub fn find_prefix(needle: &[u8], haystack: &[u8]) -> Option<uint> {
let (hlen, nlen) = (haystack.len(), needle.len());
if nlen > hlen || nlen == 0 {
return None
}
for (offset, window) in haystack.windows(nlen).enumerate() {
if window == needle {
return Some(offset)
}
}
None
}