Files
rust/library/compiler-builtins/libm/crates/libm-test/src/mpfloat.rs

321 lines
11 KiB
Rust
Raw Normal View History

//! Interfaces needed to support testing with multi-precision floating point numbers.
//!
//! Within this module, the macros create a submodule for each `libm` function. These contain
//! a struct named `Operation` that implements [`MpOp`].
use std::cmp::Ordering;
use az::Az;
use rug::Assign;
pub use rug::Float as MpFloat;
use rug::float::Round::Nearest;
use rug::ops::{PowAssignRound, RemAssignRound};
use crate::{Float, MathOp};
/// Create a multiple-precision float with the correct number of bits for a concrete float type.
fn new_mpfloat<F: Float>() -> MpFloat {
MpFloat::new(F::SIG_BITS + 1)
}
/// Set subnormal emulation and convert to a concrete float type.
fn prep_retval<F: Float>(mp: &mut MpFloat, ord: Ordering) -> F
where
for<'a> &'a MpFloat: az::Cast<F>,
{
mp.subnormalize_ieee_round(ord, Nearest);
(&*mp).az::<F>()
}
/// Structures that represent a float operation.
///
pub trait MpOp: MathOp {
/// The struct itself should hold any context that can be reused among calls to `run` (allocated
/// `MpFloat`s).
type MpTy;
/// Create a new instance.
fn new_mp() -> Self::MpTy;
/// Perform the operation.
///
/// Usually this means assigning inputs to cached floats, performing the operation, applying
/// subnormal approximation, and converting the result back to concrete values.
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet;
}
/// Implement `MpOp` for functions with a single return value.
macro_rules! impl_mp_op {
// Matcher for unary functions
(
fn_name: $fn_name:ident,
RustFn: fn($_fty:ty,) -> $_ret:ty,
fn_extra: $fn_name_normalized:expr,
) => {
paste::paste! {
impl MpOp for crate::op::$fn_name::Routine {
type MpTy = MpFloat;
fn new_mp() -> Self::MpTy {
new_mpfloat::<Self::FTy>()
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.assign(input.0);
let ord = this.[< $fn_name_normalized _round >](Nearest);
prep_retval::<Self::RustRet>(this, ord)
}
}
}
};
// Matcher for binary functions
(
fn_name: $fn_name:ident,
RustFn: fn($_fty:ty, $_fty2:ty,) -> $_ret:ty,
fn_extra: $fn_name_normalized:expr,
) => {
paste::paste! {
impl MpOp for crate::op::$fn_name::Routine {
type MpTy = (MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(new_mpfloat::<Self::FTy>(), new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(input.1);
let ord = this.0.[< $fn_name_normalized _round >](&this.1, Nearest);
prep_retval::<Self::RustRet>(&mut this.0, ord)
}
}
}
};
// Matcher for ternary functions
(
fn_name: $fn_name:ident,
RustFn: fn($_fty:ty, $_fty2:ty, $_fty3:ty,) -> $_ret:ty,
fn_extra: $fn_name_normalized:expr,
) => {
paste::paste! {
impl MpOp for crate::op::$fn_name::Routine {
type MpTy = (MpFloat, MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(
new_mpfloat::<Self::FTy>(),
new_mpfloat::<Self::FTy>(),
new_mpfloat::<Self::FTy>(),
)
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(input.1);
this.2.assign(input.2);
let ord = this.0.[< $fn_name_normalized _round >](&this.1, &this.2, Nearest);
prep_retval::<Self::RustRet>(&mut this.0, ord)
}
}
}
};
}
libm_macros::for_each_function! {
callback: impl_mp_op,
emit_types: [RustFn],
skip: [
// Most of these need a manual implementation
fabs, ceil, copysign, floor, rint, round, trunc,
fabsf, ceilf, copysignf, floorf, rintf, roundf, truncf,
fmod, fmodf, frexp, frexpf, ilogb, ilogbf, jn, jnf, ldexp, ldexpf,
lgamma_r, lgammaf_r, modf, modff, nextafter, nextafterf, pow,powf,
remquo, remquof, scalbn, scalbnf, sincos, sincosf, yn, ynf,
],
fn_extra: match MACRO_FN_NAME {
// Remap function names that are different between mpfr and libm
expm1 | expm1f => exp_m1,
fabs | fabsf => abs,
fdim | fdimf => positive_diff,
fma | fmaf => mul_add,
fmax | fmaxf => max,
fmin | fminf => min,
lgamma | lgammaf => ln_gamma,
log | logf => ln,
log1p | log1pf => ln_1p,
tgamma | tgammaf => gamma,
_ => MACRO_FN_NAME_NORMALIZED
}
}
/// Implement unary functions that don't have a `_round` version
macro_rules! impl_no_round {
// Unary matcher
($($fn_name:ident, $rug_name:ident;)*) => {
paste::paste! {
// Implement for both f32 and f64
$( impl_no_round!{ @inner_unary [< $fn_name f >], $rug_name } )*
$( impl_no_round!{ @inner_unary $fn_name, $rug_name } )*
}
};
(@inner_unary $fn_name:ident, $rug_name:ident) => {
impl MpOp for crate::op::$fn_name::Routine {
type MpTy = MpFloat;
fn new_mp() -> Self::MpTy {
new_mpfloat::<Self::FTy>()
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.assign(input.0);
this.$rug_name();
prep_retval::<Self::RustRet>(this, Ordering::Equal)
}
}
};
}
impl_no_round! {
fabs, abs_mut;
ceil, ceil_mut;
floor, floor_mut;
rint, round_even_mut; // FIXME: respect rounding mode
round, round_mut;
trunc, trunc_mut;
}
/// Some functions are difficult to do in a generic way. Implement them here.
macro_rules! impl_op_for_ty {
($fty:ty, $suffix:literal) => {
paste::paste! {
impl MpOp for crate::op::[<copysign $suffix>]::Routine {
type MpTy = (MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(new_mpfloat::<Self::FTy>(), new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(input.1);
this.0.copysign_mut(&this.1);
prep_retval::<Self::RustRet>(&mut this.0, Ordering::Equal)
}
}
impl MpOp for crate::op::[<pow $suffix>]::Routine {
type MpTy = (MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(new_mpfloat::<Self::FTy>(), new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(input.1);
let ord = this.0.pow_assign_round(&this.1, Nearest);
prep_retval::<Self::RustRet>(&mut this.0, ord)
}
}
impl MpOp for crate::op::[<fmod $suffix>]::Routine {
type MpTy = (MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(new_mpfloat::<Self::FTy>(), new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(input.1);
let ord = this.0.rem_assign_round(&this.1, Nearest);
prep_retval::<Self::RustRet>(&mut this.0, ord)
}
}
impl MpOp for crate::op::[<jn $suffix>]::Routine {
type MpTy = (i32, MpFloat);
fn new_mp() -> Self::MpTy {
(0, new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0 = input.0;
this.1.assign(input.1);
let ord = this.1.jn_round(this.0, Nearest);
prep_retval::<Self::FTy>(&mut this.1, ord)
}
}
impl MpOp for crate::op::[<sincos $suffix>]::Routine {
type MpTy = (MpFloat, MpFloat);
fn new_mp() -> Self::MpTy {
(new_mpfloat::<Self::FTy>(), new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0.assign(input.0);
this.1.assign(0.0);
let (sord, cord) = this.0.sin_cos_round(&mut this.1, Nearest);
(
prep_retval::<Self::FTy>(&mut this.0, sord),
prep_retval::<Self::FTy>(&mut this.1, cord)
)
}
}
impl MpOp for crate::op::[<yn $suffix>]::Routine {
type MpTy = (i32, MpFloat);
fn new_mp() -> Self::MpTy {
(0, new_mpfloat::<Self::FTy>())
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.0 = input.0;
this.1.assign(input.1);
let ord = this.1.yn_round(this.0, Nearest);
prep_retval::<Self::FTy>(&mut this.1, ord)
}
}
}
};
}
impl_op_for_ty!(f32, "f");
impl_op_for_ty!(f64, "");
// `lgamma_r` is not a simple suffix so we can't use the above macro.
impl MpOp for crate::op::lgamma_r::Routine {
type MpTy = MpFloat;
fn new_mp() -> Self::MpTy {
new_mpfloat::<Self::FTy>()
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.assign(input.0);
let (sign, ord) = this.ln_abs_gamma_round(Nearest);
let ret = prep_retval::<Self::FTy>(this, ord);
(ret, sign as i32)
}
}
impl MpOp for crate::op::lgammaf_r::Routine {
type MpTy = MpFloat;
fn new_mp() -> Self::MpTy {
new_mpfloat::<Self::FTy>()
}
fn run(this: &mut Self::MpTy, input: Self::RustArgs) -> Self::RustRet {
this.assign(input.0);
let (sign, ord) = this.ln_abs_gamma_round(Nearest);
let ret = prep_retval::<Self::FTy>(this, ord);
(ret, sign as i32)
}
}