std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
|
//
|
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
|
// except according to those terms.
|
|
|
|
|
|
2014-12-22 09:04:23 -08:00
|
|
|
use prelude::v1::*;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
2015-05-27 11:18:36 +03:00
|
|
|
use sync::atomic::{AtomicUsize, Ordering};
|
2015-04-04 00:46:54 +03:00
|
|
|
use sync::{mutex, MutexGuard, PoisonError};
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
use sys_common::condvar as sys;
|
|
|
|
|
use sys_common::mutex as sys_mutex;
|
2015-04-04 00:46:54 +03:00
|
|
|
use sys_common::poison::{self, LockResult};
|
|
|
|
|
use sys::time::SteadyTime;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
use time::Duration;
|
|
|
|
|
|
|
|
|
|
/// A Condition Variable
|
|
|
|
|
///
|
|
|
|
|
/// Condition variables represent the ability to block a thread such that it
|
|
|
|
|
/// consumes no CPU time while waiting for an event to occur. Condition
|
|
|
|
|
/// variables are typically associated with a boolean predicate (a condition)
|
|
|
|
|
/// and a mutex. The predicate is always verified inside of the mutex before
|
|
|
|
|
/// determining that thread must block.
|
|
|
|
|
///
|
|
|
|
|
/// Functions in this module will block the current **thread** of execution and
|
|
|
|
|
/// are bindings to system-provided condition variables where possible. Note
|
|
|
|
|
/// that this module places one additional restriction over the system condition
|
|
|
|
|
/// variables: each condvar can be used with precisely one mutex at runtime. Any
|
|
|
|
|
/// attempt to use multiple mutexes on the same condition variable will result
|
|
|
|
|
/// in a runtime panic. If this is not desired, then the unsafe primitives in
|
|
|
|
|
/// `sys` do not have this restriction but may result in undefined behavior.
|
|
|
|
|
///
|
2015-03-11 21:11:40 -04:00
|
|
|
/// # Examples
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
/// use std::sync::{Arc, Mutex, Condvar};
|
2015-02-17 15:10:25 -08:00
|
|
|
/// use std::thread;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
|
|
|
|
|
/// let pair2 = pair.clone();
|
|
|
|
|
///
|
|
|
|
|
/// // Inside of our lock, spawn a new thread, and then wait for it to start
|
2015-02-17 15:10:25 -08:00
|
|
|
/// thread::spawn(move|| {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// let &(ref lock, ref cvar) = &*pair2;
|
2014-12-08 20:20:03 -08:00
|
|
|
/// let mut started = lock.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// *started = true;
|
|
|
|
|
/// cvar.notify_one();
|
2015-01-05 21:59:45 -08:00
|
|
|
/// });
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// // wait for the thread to start up
|
|
|
|
|
/// let &(ref lock, ref cvar) = &*pair;
|
2014-12-08 20:20:03 -08:00
|
|
|
/// let mut started = lock.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// while !*started {
|
2014-12-08 20:20:03 -08:00
|
|
|
/// started = cvar.wait(started).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// }
|
|
|
|
|
/// ```
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub struct Condvar { inner: Box<StaticCondvar> }
|
|
|
|
|
|
|
|
|
|
/// Statically allocated condition variables.
|
|
|
|
|
///
|
|
|
|
|
/// This structure is identical to `Condvar` except that it is suitable for use
|
|
|
|
|
/// in static initializers for other structures.
|
|
|
|
|
///
|
2015-03-11 21:11:40 -04:00
|
|
|
/// # Examples
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// ```
|
2015-07-27 10:50:19 -04:00
|
|
|
/// #![feature(static_condvar)]
|
|
|
|
|
///
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// use std::sync::{StaticCondvar, CONDVAR_INIT};
|
|
|
|
|
///
|
|
|
|
|
/// static CVAR: StaticCondvar = CONDVAR_INIT;
|
|
|
|
|
/// ```
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub struct StaticCondvar {
|
|
|
|
|
inner: sys::Condvar,
|
2015-01-10 13:42:48 -08:00
|
|
|
mutex: AtomicUsize,
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Constant initializer for a statically allocated condition variable.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2015-05-27 11:18:36 +03:00
|
|
|
pub const CONDVAR_INIT: StaticCondvar = StaticCondvar::new();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
|
|
|
|
impl Condvar {
|
|
|
|
|
/// Creates a new condition variable which is ready to be waited on and
|
|
|
|
|
/// notified.
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub fn new() -> Condvar {
|
|
|
|
|
Condvar {
|
|
|
|
|
inner: box StaticCondvar {
|
2015-05-27 11:18:36 +03:00
|
|
|
inner: sys::Condvar::new(),
|
2015-01-10 13:42:48 -08:00
|
|
|
mutex: AtomicUsize::new(0),
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Blocks the current thread until this condition variable receives a
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// notification.
|
|
|
|
|
///
|
|
|
|
|
/// This function will atomically unlock the mutex specified (represented by
|
2014-12-08 20:20:03 -08:00
|
|
|
/// `mutex_guard`) and block the current thread. This means that any calls
|
|
|
|
|
/// to `notify_*()` which happen logically after the mutex is unlocked are
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// candidates to wake this thread up. When this function call returns, the
|
|
|
|
|
/// lock specified will have been re-acquired.
|
|
|
|
|
///
|
|
|
|
|
/// Note that this function is susceptible to spurious wakeups. Condition
|
|
|
|
|
/// variables normally have a boolean predicate associated with them, and
|
|
|
|
|
/// the predicate must always be checked each time this function returns to
|
|
|
|
|
/// protect against spurious wakeups.
|
|
|
|
|
///
|
2014-12-08 20:20:03 -08:00
|
|
|
/// # Failure
|
|
|
|
|
///
|
|
|
|
|
/// This function will return an error if the mutex being waited on is
|
|
|
|
|
/// poisoned when this thread re-acquires the lock. For more information,
|
|
|
|
|
/// see information about poisoning on the Mutex type.
|
|
|
|
|
///
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// # Panics
|
|
|
|
|
///
|
|
|
|
|
/// This function will `panic!()` if it is used with more than one mutex
|
|
|
|
|
/// over time. Each condition variable is dynamically bound to exactly one
|
|
|
|
|
/// mutex to ensure defined behavior across platforms. If this functionality
|
|
|
|
|
/// is not desired, then unsafe primitives in `sys` are provided.
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2014-12-29 10:01:38 -08:00
|
|
|
pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>)
|
|
|
|
|
-> LockResult<MutexGuard<'a, T>> {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
unsafe {
|
|
|
|
|
let me: &'static Condvar = &*(self as *const _);
|
2014-12-29 10:01:38 -08:00
|
|
|
me.inner.wait(guard)
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// specified duration.
|
|
|
|
|
///
|
2015-04-01 12:20:57 -07:00
|
|
|
/// The semantics of this function are equivalent to `wait()`
|
|
|
|
|
/// except that the thread will be blocked for roughly no longer
|
|
|
|
|
/// than `ms` milliseconds. This method should not be used for
|
|
|
|
|
/// precise timing due to anomalies such as preemption or platform
|
|
|
|
|
/// differences that may not cause the maximum amount of time
|
|
|
|
|
/// waited to be precisely `ms`.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
2015-04-01 12:20:57 -07:00
|
|
|
/// The returned boolean is `false` only if the timeout is known
|
|
|
|
|
/// to have elapsed.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// Like `wait`, the lock specified will be re-acquired when this function
|
|
|
|
|
/// returns, regardless of whether the timeout elapsed or not.
|
2015-04-01 12:20:57 -07:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
|
pub fn wait_timeout_ms<'a, T>(&self, guard: MutexGuard<'a, T>, ms: u32)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)> {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
unsafe {
|
|
|
|
|
let me: &'static Condvar = &*(self as *const _);
|
2015-04-01 12:20:57 -07:00
|
|
|
me.inner.wait_timeout_ms(guard, ms)
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-28 11:40:04 -07:00
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
|
|
|
|
/// specified duration.
|
|
|
|
|
///
|
|
|
|
|
/// The semantics of this function are equivalent to `wait()` except that
|
|
|
|
|
/// the thread will be blocked for roughly no longer than `dur`. This
|
|
|
|
|
/// method should not be used for precise timing due to anomalies such as
|
|
|
|
|
/// preemption or platform differences that may not cause the maximum
|
|
|
|
|
/// amount of time waited to be precisely `dur`.
|
|
|
|
|
///
|
|
|
|
|
/// The returned boolean is `false` only if the timeout is known
|
|
|
|
|
/// to have elapsed.
|
|
|
|
|
///
|
|
|
|
|
/// Like `wait`, the lock specified will be re-acquired when this function
|
|
|
|
|
/// returns, regardless of whether the timeout elapsed or not.
|
2015-08-13 10:12:38 -07:00
|
|
|
#[unstable(feature = "wait_timeout", reason = "waiting for Duration",
|
|
|
|
|
issue = "27772")]
|
2015-04-28 11:40:04 -07:00
|
|
|
pub fn wait_timeout<'a, T>(&self, guard: MutexGuard<'a, T>,
|
|
|
|
|
dur: Duration)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)> {
|
|
|
|
|
unsafe {
|
|
|
|
|
let me: &'static Condvar = &*(self as *const _);
|
|
|
|
|
me.inner.wait_timeout(guard, dur)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
2015-01-13 21:24:26 -08:00
|
|
|
/// specified duration.
|
|
|
|
|
///
|
|
|
|
|
/// The semantics of this function are equivalent to `wait_timeout` except
|
|
|
|
|
/// that the implementation will repeatedly wait while the duration has not
|
|
|
|
|
/// passed and the provided function returns `false`.
|
2015-04-01 12:20:57 -07:00
|
|
|
#[unstable(feature = "wait_timeout_with",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "unsure if this API is broadly needed or what form it should take",
|
|
|
|
|
issue = "27748")]
|
2015-01-13 21:24:26 -08:00
|
|
|
pub fn wait_timeout_with<'a, T, F>(&self,
|
|
|
|
|
guard: MutexGuard<'a, T>,
|
|
|
|
|
dur: Duration,
|
|
|
|
|
f: F)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)>
|
|
|
|
|
where F: FnMut(LockResult<&mut T>) -> bool {
|
|
|
|
|
unsafe {
|
|
|
|
|
let me: &'static Condvar = &*(self as *const _);
|
|
|
|
|
me.inner.wait_timeout_with(guard, dur, f)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Wakes up one blocked thread on this condvar.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// If there is a blocked thread on this condition variable, then it will
|
|
|
|
|
/// be woken up from its call to `wait` or `wait_timeout`. Calls to
|
|
|
|
|
/// `notify_one` are not buffered in any way.
|
|
|
|
|
///
|
2015-01-15 22:43:12 +00:00
|
|
|
/// To wake up all threads, see `notify_all()`.
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub fn notify_one(&self) { unsafe { self.inner.inner.notify_one() } }
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Wakes up all blocked threads on this condvar.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// This method will ensure that any current waiters on the condition
|
|
|
|
|
/// variable are awoken. Calls to `notify_all()` are not buffered in any
|
|
|
|
|
/// way.
|
|
|
|
|
///
|
|
|
|
|
/// To wake up only one thread, see `notify_one()`.
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub fn notify_all(&self) { unsafe { self.inner.inner.notify_all() } }
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-23 21:48:20 -08:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
impl Drop for Condvar {
|
|
|
|
|
fn drop(&mut self) {
|
|
|
|
|
unsafe { self.inner.inner.destroy() }
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl StaticCondvar {
|
2015-05-27 11:18:36 +03:00
|
|
|
/// Creates a new condition variable
|
|
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2015-05-27 11:18:36 +03:00
|
|
|
pub const fn new() -> StaticCondvar {
|
|
|
|
|
StaticCondvar {
|
|
|
|
|
inner: sys::Condvar::new(),
|
|
|
|
|
mutex: AtomicUsize::new(0),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Blocks the current thread until this condition variable receives a
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// notification.
|
|
|
|
|
///
|
|
|
|
|
/// See `Condvar::wait`.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2014-12-29 10:01:38 -08:00
|
|
|
pub fn wait<'a, T>(&'static self, guard: MutexGuard<'a, T>)
|
|
|
|
|
-> LockResult<MutexGuard<'a, T>> {
|
2014-12-08 20:20:03 -08:00
|
|
|
let poisoned = unsafe {
|
2014-12-29 10:01:38 -08:00
|
|
|
let lock = mutex::guard_lock(&guard);
|
|
|
|
|
self.verify(lock);
|
|
|
|
|
self.inner.wait(lock);
|
|
|
|
|
mutex::guard_poison(&guard).get()
|
2014-12-08 20:20:03 -08:00
|
|
|
};
|
|
|
|
|
if poisoned {
|
2015-01-23 11:58:49 -08:00
|
|
|
Err(PoisonError::new(guard))
|
2014-12-08 20:20:03 -08:00
|
|
|
} else {
|
2014-12-29 10:01:38 -08:00
|
|
|
Ok(guard)
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
/// specified duration.
|
|
|
|
|
///
|
|
|
|
|
/// See `Condvar::wait_timeout`.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2015-04-01 12:20:57 -07:00
|
|
|
pub fn wait_timeout_ms<'a, T>(&'static self, guard: MutexGuard<'a, T>, ms: u32)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)> {
|
2015-04-28 11:40:04 -07:00
|
|
|
self.wait_timeout(guard, Duration::from_millis(ms as u64))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
|
|
|
|
/// specified duration.
|
|
|
|
|
///
|
|
|
|
|
/// See `Condvar::wait_timeout`.
|
|
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2015-04-28 11:40:04 -07:00
|
|
|
pub fn wait_timeout<'a, T>(&'static self,
|
|
|
|
|
guard: MutexGuard<'a, T>,
|
|
|
|
|
timeout: Duration)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)> {
|
2014-12-08 20:20:03 -08:00
|
|
|
let (poisoned, success) = unsafe {
|
2014-12-29 10:01:38 -08:00
|
|
|
let lock = mutex::guard_lock(&guard);
|
|
|
|
|
self.verify(lock);
|
2015-04-28 11:40:04 -07:00
|
|
|
let success = self.inner.wait_timeout(lock, timeout);
|
2014-12-29 10:01:38 -08:00
|
|
|
(mutex::guard_poison(&guard).get(), success)
|
2014-12-08 20:20:03 -08:00
|
|
|
};
|
|
|
|
|
if poisoned {
|
2015-01-23 11:58:49 -08:00
|
|
|
Err(PoisonError::new((guard, success)))
|
2014-12-08 20:20:03 -08:00
|
|
|
} else {
|
2014-12-29 10:01:38 -08:00
|
|
|
Ok((guard, success))
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Waits on this condition variable for a notification, timing out after a
|
2015-01-13 21:24:26 -08:00
|
|
|
/// specified duration.
|
|
|
|
|
///
|
|
|
|
|
/// The implementation will repeatedly wait while the duration has not
|
|
|
|
|
/// passed and the function returns `false`.
|
|
|
|
|
///
|
|
|
|
|
/// See `Condvar::wait_timeout_with`.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
2015-01-13 21:24:26 -08:00
|
|
|
pub fn wait_timeout_with<'a, T, F>(&'static self,
|
|
|
|
|
guard: MutexGuard<'a, T>,
|
|
|
|
|
dur: Duration,
|
|
|
|
|
mut f: F)
|
|
|
|
|
-> LockResult<(MutexGuard<'a, T>, bool)>
|
|
|
|
|
where F: FnMut(LockResult<&mut T>) -> bool {
|
2015-04-28 11:40:04 -07:00
|
|
|
// This could be made more efficient by pushing the implementation into
|
|
|
|
|
// sys::condvar
|
2015-01-13 21:24:26 -08:00
|
|
|
let start = SteadyTime::now();
|
|
|
|
|
let mut guard_result: LockResult<MutexGuard<'a, T>> = Ok(guard);
|
|
|
|
|
while !f(guard_result
|
|
|
|
|
.as_mut()
|
|
|
|
|
.map(|g| &mut **g)
|
2015-01-23 11:58:49 -08:00
|
|
|
.map_err(|e| PoisonError::new(&mut **e.get_mut()))) {
|
2015-01-13 21:24:26 -08:00
|
|
|
let now = SteadyTime::now();
|
|
|
|
|
let consumed = &now - &start;
|
|
|
|
|
let guard = guard_result.unwrap_or_else(|e| e.into_inner());
|
2015-04-28 11:40:04 -07:00
|
|
|
let (new_guard_result, no_timeout) = if consumed > dur {
|
|
|
|
|
(Ok(guard), false)
|
|
|
|
|
} else {
|
|
|
|
|
match self.wait_timeout(guard, dur - consumed) {
|
|
|
|
|
Ok((new_guard, no_timeout)) => (Ok(new_guard), no_timeout),
|
|
|
|
|
Err(err) => {
|
|
|
|
|
let (new_guard, no_timeout) = err.into_inner();
|
|
|
|
|
(Err(PoisonError::new(new_guard)), no_timeout)
|
|
|
|
|
}
|
2015-01-13 21:24:26 -08:00
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
guard_result = new_guard_result;
|
|
|
|
|
if !no_timeout {
|
|
|
|
|
let result = f(guard_result
|
|
|
|
|
.as_mut()
|
|
|
|
|
.map(|g| &mut **g)
|
2015-01-23 11:58:49 -08:00
|
|
|
.map_err(|e| PoisonError::new(&mut **e.get_mut())));
|
2015-01-13 21:24:26 -08:00
|
|
|
return poison::map_result(guard_result, |g| (g, result));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
poison::map_result(guard_result, |g| (g, true))
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Wakes up one blocked thread on this condvar.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// See `Condvar::notify_one`.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub fn notify_one(&'static self) { unsafe { self.inner.notify_one() } }
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Wakes up all blocked threads on this condvar.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// See `Condvar::notify_all`.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub fn notify_all(&'static self) { unsafe { self.inner.notify_all() } }
|
|
|
|
|
|
2015-04-13 10:21:32 -04:00
|
|
|
/// Deallocates all resources associated with this static condvar.
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
///
|
|
|
|
|
/// This method is unsafe to call as there is no guarantee that there are no
|
|
|
|
|
/// active users of the condvar, and this also doesn't prevent any future
|
|
|
|
|
/// users of the condvar. This method is required to be called to not leak
|
|
|
|
|
/// memory on all platforms.
|
2015-04-28 11:40:04 -07:00
|
|
|
#[unstable(feature = "static_condvar",
|
2015-08-13 10:12:38 -07:00
|
|
|
reason = "may be merged with Condvar in the future",
|
|
|
|
|
issue = "27717")]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
pub unsafe fn destroy(&'static self) {
|
|
|
|
|
self.inner.destroy()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn verify(&self, mutex: &sys_mutex::Mutex) {
|
2015-02-23 17:16:46 +13:00
|
|
|
let addr = mutex as *const _ as usize;
|
2015-01-01 23:53:35 -08:00
|
|
|
match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
// If we got out 0, then we have successfully bound the mutex to
|
|
|
|
|
// this cvar.
|
|
|
|
|
0 => {}
|
|
|
|
|
|
|
|
|
|
// If we get out a value that's the same as `addr`, then someone
|
|
|
|
|
// already beat us to the punch.
|
|
|
|
|
n if n == addr => {}
|
|
|
|
|
|
|
|
|
|
// Anything else and we're using more than one mutex on this cvar,
|
|
|
|
|
// which is currently disallowed.
|
|
|
|
|
_ => panic!("attempted to use a condition variable with two \
|
|
|
|
|
mutexes"),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
mod tests {
|
2014-12-22 09:04:23 -08:00
|
|
|
use prelude::v1::*;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
2015-05-27 11:18:36 +03:00
|
|
|
use super::StaticCondvar;
|
2014-12-23 11:53:35 -08:00
|
|
|
use sync::mpsc::channel;
|
2015-05-27 11:18:36 +03:00
|
|
|
use sync::{StaticMutex, Condvar, Mutex, Arc};
|
|
|
|
|
use sync::atomic::{AtomicUsize, Ordering};
|
2015-02-17 15:10:25 -08:00
|
|
|
use thread;
|
2014-12-22 09:04:23 -08:00
|
|
|
use time::Duration;
|
2015-04-01 12:20:57 -07:00
|
|
|
use u32;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn smoke() {
|
|
|
|
|
let c = Condvar::new();
|
|
|
|
|
c.notify_one();
|
|
|
|
|
c.notify_all();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn static_smoke() {
|
2015-05-27 11:18:36 +03:00
|
|
|
static C: StaticCondvar = StaticCondvar::new();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
C.notify_one();
|
|
|
|
|
C.notify_all();
|
|
|
|
|
unsafe { C.destroy(); }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn notify_one() {
|
2015-05-27 11:18:36 +03:00
|
|
|
static C: StaticCondvar = StaticCondvar::new();
|
|
|
|
|
static M: StaticMutex = StaticMutex::new();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
2015-01-02 09:24:56 -08:00
|
|
|
let g = M.lock().unwrap();
|
2015-02-17 15:10:25 -08:00
|
|
|
let _t = thread::spawn(move|| {
|
2014-12-08 20:20:03 -08:00
|
|
|
let _g = M.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
C.notify_one();
|
|
|
|
|
});
|
2014-12-08 20:20:03 -08:00
|
|
|
let g = C.wait(g).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
drop(g);
|
|
|
|
|
unsafe { C.destroy(); M.destroy(); }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn notify_all() {
|
2015-02-23 17:16:46 +13:00
|
|
|
const N: usize = 10;
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
|
|
|
|
let data = Arc::new((Mutex::new(0), Condvar::new()));
|
|
|
|
|
let (tx, rx) = channel();
|
2015-01-26 15:46:12 -05:00
|
|
|
for _ in 0..N {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
let data = data.clone();
|
|
|
|
|
let tx = tx.clone();
|
2015-02-17 15:10:25 -08:00
|
|
|
thread::spawn(move|| {
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
let &(ref lock, ref cond) = &*data;
|
2014-12-08 20:20:03 -08:00
|
|
|
let mut cnt = lock.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
*cnt += 1;
|
|
|
|
|
if *cnt == N {
|
2014-12-23 11:53:35 -08:00
|
|
|
tx.send(()).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
while *cnt != 0 {
|
2014-12-08 20:20:03 -08:00
|
|
|
cnt = cond.wait(cnt).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
2014-12-23 11:53:35 -08:00
|
|
|
tx.send(()).unwrap();
|
2015-01-05 21:59:45 -08:00
|
|
|
});
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
drop(tx);
|
|
|
|
|
|
|
|
|
|
let &(ref lock, ref cond) = &*data;
|
2014-12-23 11:53:35 -08:00
|
|
|
rx.recv().unwrap();
|
2014-12-08 20:20:03 -08:00
|
|
|
let mut cnt = lock.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
*cnt = 0;
|
|
|
|
|
cond.notify_all();
|
|
|
|
|
drop(cnt);
|
|
|
|
|
|
2015-01-26 15:46:12 -05:00
|
|
|
for _ in 0..N {
|
2014-12-23 11:53:35 -08:00
|
|
|
rx.recv().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
2015-04-01 12:20:57 -07:00
|
|
|
fn wait_timeout_ms() {
|
2015-05-27 11:18:36 +03:00
|
|
|
static C: StaticCondvar = StaticCondvar::new();
|
|
|
|
|
static M: StaticMutex = StaticMutex::new();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
2014-12-08 20:20:03 -08:00
|
|
|
let g = M.lock().unwrap();
|
2015-04-01 12:20:57 -07:00
|
|
|
let (g, _no_timeout) = C.wait_timeout_ms(g, 1).unwrap();
|
2015-01-19 09:11:06 -08:00
|
|
|
// spurious wakeups mean this isn't necessarily true
|
|
|
|
|
// assert!(!no_timeout);
|
2015-02-17 15:10:25 -08:00
|
|
|
let _t = thread::spawn(move || {
|
2014-12-08 20:20:03 -08:00
|
|
|
let _g = M.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
C.notify_one();
|
|
|
|
|
});
|
2015-04-01 12:20:57 -07:00
|
|
|
let (g, no_timeout) = C.wait_timeout_ms(g, u32::MAX).unwrap();
|
2015-01-19 09:11:06 -08:00
|
|
|
assert!(no_timeout);
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
drop(g);
|
|
|
|
|
unsafe { C.destroy(); M.destroy(); }
|
|
|
|
|
}
|
|
|
|
|
|
2015-01-13 21:24:26 -08:00
|
|
|
#[test]
|
|
|
|
|
fn wait_timeout_with() {
|
2015-05-27 11:18:36 +03:00
|
|
|
static C: StaticCondvar = StaticCondvar::new();
|
|
|
|
|
static M: StaticMutex = StaticMutex::new();
|
|
|
|
|
static S: AtomicUsize = AtomicUsize::new(0);
|
2015-01-13 21:24:26 -08:00
|
|
|
|
|
|
|
|
let g = M.lock().unwrap();
|
2015-04-28 11:40:04 -07:00
|
|
|
let (g, success) = C.wait_timeout_with(g, Duration::new(0, 1000), |_| {
|
|
|
|
|
false
|
|
|
|
|
}).unwrap();
|
2015-01-13 21:24:26 -08:00
|
|
|
assert!(!success);
|
|
|
|
|
|
|
|
|
|
let (tx, rx) = channel();
|
2015-02-17 15:10:25 -08:00
|
|
|
let _t = thread::spawn(move || {
|
2015-01-13 21:24:26 -08:00
|
|
|
rx.recv().unwrap();
|
|
|
|
|
let g = M.lock().unwrap();
|
|
|
|
|
S.store(1, Ordering::SeqCst);
|
|
|
|
|
C.notify_one();
|
|
|
|
|
drop(g);
|
|
|
|
|
|
|
|
|
|
rx.recv().unwrap();
|
|
|
|
|
let g = M.lock().unwrap();
|
|
|
|
|
S.store(2, Ordering::SeqCst);
|
|
|
|
|
C.notify_one();
|
|
|
|
|
drop(g);
|
|
|
|
|
|
|
|
|
|
rx.recv().unwrap();
|
|
|
|
|
let _g = M.lock().unwrap();
|
|
|
|
|
S.store(3, Ordering::SeqCst);
|
|
|
|
|
C.notify_one();
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
let mut state = 0;
|
2015-04-28 11:40:04 -07:00
|
|
|
let day = 24 * 60 * 60;
|
|
|
|
|
let (_g, success) = C.wait_timeout_with(g, Duration::new(day, 0), |_| {
|
2015-01-13 21:24:26 -08:00
|
|
|
assert_eq!(state, S.load(Ordering::SeqCst));
|
|
|
|
|
tx.send(()).unwrap();
|
|
|
|
|
state += 1;
|
|
|
|
|
match state {
|
|
|
|
|
1|2 => false,
|
|
|
|
|
_ => true,
|
|
|
|
|
}
|
|
|
|
|
}).unwrap();
|
|
|
|
|
assert!(success);
|
|
|
|
|
}
|
|
|
|
|
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
#[test]
|
2015-01-31 15:08:25 -08:00
|
|
|
#[should_panic]
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
fn two_mutexes() {
|
2015-05-27 11:18:36 +03:00
|
|
|
static M1: StaticMutex = StaticMutex::new();
|
|
|
|
|
static M2: StaticMutex = StaticMutex::new();
|
|
|
|
|
static C: StaticCondvar = StaticCondvar::new();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
|
2014-12-08 20:20:03 -08:00
|
|
|
let mut g = M1.lock().unwrap();
|
2015-02-17 15:10:25 -08:00
|
|
|
let _t = thread::spawn(move|| {
|
2014-12-08 20:20:03 -08:00
|
|
|
let _g = M1.lock().unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
C.notify_one();
|
|
|
|
|
});
|
2014-12-08 20:20:03 -08:00
|
|
|
g = C.wait(g).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
drop(g);
|
|
|
|
|
|
2015-01-02 09:24:56 -08:00
|
|
|
let _ = C.wait(M2.lock().unwrap()).unwrap();
|
std: Rewrite the `sync` module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.
The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:
* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
A condition variable is now an entirely separate type. This separation
benefits users who only use one mutex, and provides a clearer distinction of
who's responsible for managing condition variables (the application).
* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
system primitives rather than using a custom implementation. The `Once`,
`Barrier`, and `Semaphore` types are still built upon these abstractions of
the system primitives.
* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
constant initializer corresponding to them. These are provided primarily for C
FFI interoperation, but are often useful to otherwise simply have a global
lock. The types, however, will leak memory unless `destroy()` is called on
them, which is clearly documented.
* The `Condvar` implementation for an `RWLock` write lock has been removed. This
may be added back in the future with a userspace implementation, but this
commit is focused on exposing the system primitives first.
* The fundamental architecture of this design is to provide two separate layers.
The first layer is that exposed by `sys_common` which is a cross-platform
bare-metal abstraction of the system synchronization primitives. No attempt is
made at making this layer safe, and it is quite unsafe to use! It is currently
not exported as part of the API of the standard library, but the stabilization
of the `sys` module will ensure that these will be exposed in time. The
purpose of this layer is to provide the core cross-platform abstractions if
necessary to implementors.
The second layer is the layer provided by `std::sync` which is intended to be
the thinnest possible layer on top of `sys_common` which is entirely safe to
use. There are a few concerns which need to be addressed when making these
system primitives safe:
* Once used, the OS primitives can never be **moved**. This means that they
essentially need to have a stable address. The static primitives use
`&'static self` to enforce this, and the non-static primitives all use a
`Box` to provide this guarantee.
* Poisoning is leveraged to ensure that invalid data is not accessible from
other tasks after one has panicked.
In addition to these overall blanket safety limitations, each primitive has a
few restrictions of its own:
* Mutexes and rwlocks can only be unlocked from the same thread that they
were locked by. This is achieved through RAII lock guards which cannot be
sent across threads.
* Mutexes and rwlocks can only be unlocked if they were previously locked.
This is achieved by not exposing an unlocking method.
* A condition variable can only be waited on with a locked mutex. This is
achieved by requiring a `MutexGuard` in the `wait()` method.
* A condition variable cannot be used concurrently with more than one mutex.
This is guaranteed by dynamically binding a condition variable to
precisely one mutex for its entire lifecycle. This restriction may be able
to be relaxed in the future (a mutex is unbound when no threads are
waiting on the condvar), but for now it is sufficient to guarantee safety.
* Condvars now support timeouts for their blocking operations. The
implementation for these operations is provided by the system.
Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.
[breaking-change]
Closes #17094
Closes #18003
2014-11-24 11:16:40 -08:00
|
|
|
}
|
|
|
|
|
}
|