Files
rust/compiler/rustc_codegen_ssa/src/mir/operand.rs

682 lines
28 KiB
Rust
Raw Normal View History

use std::fmt;
use arrayvec::ArrayVec;
use either::Either;
use rustc_abi as abi;
use rustc_abi::{Align, BackendRepr, Size};
use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
use rustc_middle::mir::{self, ConstValue};
2020-03-29 16:41:09 +02:00
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::{bug, span_bug};
use tracing::debug;
use super::place::{PlaceRef, PlaceValue};
use super::{FunctionCx, LocalRef};
use crate::traits::*;
use crate::{MemFlags, size_of_val};
2015-11-13 00:12:50 +02:00
/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone, Debug)]
pub enum OperandValue<V> {
/// A reference to the actual operand. The data is guaranteed
/// to be valid for the operand's lifetime.
/// The second value, if any, is the extra data (vtable or length)
/// which indicates that it refers to an unsized rvalue.
///
/// An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
/// (That basically amounts to "isn't one of the other variants".)
///
/// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
/// to the location holding the value. The type behind that pointer is the
/// one returned by [`LayoutTypeCodegenMethods::backend_type`].
Ref(PlaceValue<V>),
/// A single LLVM immediate value.
///
/// An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
/// The backend value in this variant must be the *immediate* backend type,
/// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
Immediate(V),
/// A pair of immediate LLVM values. Used by wide pointers too.
///
/// An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
/// The backend values in this variant must be the *immediate* backend types,
/// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
/// with `immediate: true`.
2019-12-22 17:42:04 -05:00
Pair(V, V),
/// A value taking no bytes, and which therefore needs no LLVM value at all.
///
/// If you ever need a `V` to pass to something, get a fresh poison value
/// from [`ConstCodegenMethods::const_poison`].
///
/// An `OperandValue` *must* be this variant for any type for which
/// `is_zst` on its `Layout` returns `true`. Note however that
/// these values can still require alignment.
ZeroSized,
}
impl<V: CodegenObject> OperandValue<V> {
/// If this is ZeroSized/Immediate/Pair, return an array of the 0/1/2 values.
/// If this is Ref, return the place.
#[inline]
pub(crate) fn immediates_or_place(self) -> Either<ArrayVec<V, 2>, PlaceValue<V>> {
match self {
OperandValue::ZeroSized => Either::Left(ArrayVec::new()),
OperandValue::Immediate(a) => Either::Left(ArrayVec::from_iter([a])),
OperandValue::Pair(a, b) => Either::Left([a, b].into()),
OperandValue::Ref(p) => Either::Right(p),
}
}
/// Given an array of 0/1/2 immediate values, return ZeroSized/Immediate/Pair.
#[inline]
pub(crate) fn from_immediates(immediates: ArrayVec<V, 2>) -> Self {
let mut it = immediates.into_iter();
let Some(a) = it.next() else {
return OperandValue::ZeroSized;
};
let Some(b) = it.next() else {
return OperandValue::Immediate(a);
};
OperandValue::Pair(a, b)
}
/// Treat this value as a pointer and return the data pointer and
/// optional metadata as backend values.
///
/// If you're making a place, use [`Self::deref`] instead.
pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
match self {
OperandValue::Immediate(llptr) => (llptr, None),
OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
_ => bug!("OperandValue cannot be a pointer: {self:?}"),
}
}
/// Treat this value as a pointer and return the place to which it points.
///
/// The pointer immediate doesn't inherently know its alignment,
/// so you need to pass it in. If you want to get it from a type's ABI
/// alignment, then maybe you want [`OperandRef::deref`] instead.
///
/// This is the inverse of [`PlaceValue::address`].
pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
let (llval, llextra) = self.pointer_parts();
PlaceValue { llval, llextra, align }
}
pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
&self,
cx: &Cx,
ty: TyAndLayout<'tcx>,
) -> bool {
match self {
OperandValue::ZeroSized => ty.is_zst(),
OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
OperandValue::Ref(_) => cx.is_backend_ref(ty),
}
}
}
2015-11-13 00:12:50 +02:00
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder::store`
/// directly is sure to cause problems -- use `OperandRef::store`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx, V> {
/// The value.
pub val: OperandValue<V>,
/// The layout of value, based on its Rust type.
2020-03-04 14:50:21 +00:00
pub layout: TyAndLayout<'tcx>,
}
impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
}
}
impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
assert!(layout.is_zst());
OperandRef { val: OperandValue::ZeroSized, layout }
}
pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
val: mir::ConstValue<'tcx>,
ty: Ty<'tcx>,
) -> Self {
let layout = bx.layout_of(ty);
2018-01-16 09:31:48 +01:00
let val = match val {
2018-05-20 23:46:30 +02:00
ConstValue::Scalar(x) => {
let BackendRepr::Scalar(scalar) = layout.backend_repr else {
2022-02-19 00:48:49 +01:00
bug!("from_const: invalid ByVal layout: {:#?}", layout);
2018-01-16 09:31:48 +01:00
};
2019-12-22 17:42:04 -05:00
let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
2018-01-16 09:31:48 +01:00
OperandValue::Immediate(llval)
2019-12-22 17:42:04 -05:00
}
ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
ConstValue::Slice { data, meta } => {
let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
2022-02-19 00:48:49 +01:00
bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
2018-01-16 09:31:48 +01:00
};
let a = Scalar::from_pointer(
Pointer::new(bx.tcx().reserve_and_set_memory_alloc(data).into(), Size::ZERO),
&bx.tcx(),
);
let a_llval = bx.scalar_to_backend(
2018-01-16 09:31:48 +01:00
a,
a_scalar,
bx.scalar_pair_element_backend_type(layout, 0, true),
2018-01-16 09:31:48 +01:00
);
let b_llval = bx.const_usize(meta);
2018-01-16 09:31:48 +01:00
OperandValue::Pair(a_llval, b_llval)
2019-12-22 17:42:04 -05:00
}
ConstValue::Indirect { alloc_id, offset } => {
let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
return Self::from_const_alloc(bx, layout, alloc, offset);
2019-12-22 17:42:04 -05:00
}
2018-01-16 09:31:48 +01:00
};
2019-12-22 17:42:04 -05:00
OperandRef { val, layout }
2018-01-16 09:31:48 +01:00
}
fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
layout: TyAndLayout<'tcx>,
alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
offset: Size,
) -> Self {
let alloc_align = alloc.inner().align;
assert!(alloc_align >= layout.align.abi);
// Returns `None` when the value is partially undefined or any byte of it has provenance.
// Otherwise returns the value or (if the entire value is undef) returns an undef.
let read_scalar = |start, size, s: abi::Scalar, ty| {
let range = alloc_range(start, size);
match alloc.0.read_scalar(
bx,
range,
/*read_provenance*/ matches!(s.primitive(), abi::Primitive::Pointer(_)),
) {
Ok(val) => Some(bx.scalar_to_backend(val, s, ty)),
Err(_) => {
// We may have failed due to partial provenance or unexpected provenance,
// continue down the normal code path if so.
if alloc.0.provenance().range_empty(range, &bx.tcx())
// Since `read_scalar` failed, but there were no relocations involved, the
// bytes must be partially or fully uninitialized. Thus we can now unwrap the
// information about the range of uninit bytes and check if it's the full range.
&& alloc.0.init_mask().is_range_initialized(range).unwrap_err() == range
{
Some(bx.const_undef(ty))
} else {
None
}
}
}
};
// It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
// However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
// and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
// case where some of the bytes are initialized and others are not. So, we need an extra
// check that walks over the type of `mplace` to make sure it is truly correct to treat this
// like a `Scalar` (or `ScalarPair`).
match layout.backend_repr {
BackendRepr::Scalar(s) => {
let size = s.size(bx);
assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
if let Some(val) = read_scalar(offset, size, s, bx.immediate_backend_type(layout)) {
return OperandRef { val: OperandValue::Immediate(val), layout };
}
}
BackendRepr::ScalarPair(a, b) => {
let (a_size, b_size) = (a.size(bx), b.size(bx));
let b_offset = (offset + a_size).align_to(b.align(bx).abi);
assert!(b_offset.bytes() > 0);
let a_val = read_scalar(
offset,
a_size,
a,
bx.scalar_pair_element_backend_type(layout, 0, true),
);
let b_val = read_scalar(
b_offset,
b_size,
b,
bx.scalar_pair_element_backend_type(layout, 1, true),
);
if let (Some(a_val), Some(b_val)) = (a_val, b_val) {
return OperandRef { val: OperandValue::Pair(a_val, b_val), layout };
}
}
_ if layout.is_zst() => return OperandRef::zero_sized(layout),
_ => {}
}
// Neither a scalar nor scalar pair. Load from a place
// FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
// same `ConstAllocation`?
let init = bx.const_data_from_alloc(alloc);
let base_addr = bx.static_addr_of(init, alloc_align, None);
let llval = bx.const_ptr_byte_offset(base_addr, offset);
bx.load_operand(PlaceRef::new_sized(llval, layout))
}
/// Asserts that this operand refers to a scalar and returns
/// a reference to its value.
pub fn immediate(self) -> V {
match self.val {
OperandValue::Immediate(s) => s,
2019-12-22 17:42:04 -05:00
_ => bug!("not immediate: {:?}", self),
}
}
/// Asserts that this operand is a pointer (or reference) and returns
/// the place to which it points. (This requires no code to be emitted
/// as we represent places using the pointer to the place.)
///
/// This uses [`Ty::builtin_deref`] to include the type of the place and
/// assumes the place is aligned to the pointee's usual ABI alignment.
///
/// If you don't need the type, see [`OperandValue::pointer_parts`]
/// or [`OperandValue::deref`].
pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
2022-05-18 21:49:46 -07:00
if self.layout.ty.is_box() {
// Derefer should have removed all Box derefs
2022-05-18 21:49:46 -07:00
bug!("dereferencing {:?} in codegen", self.layout.ty);
2022-05-13 21:53:03 -07:00
}
2019-12-22 17:42:04 -05:00
let projected_ty = self
.layout
.ty
.builtin_deref(true)
2024-05-09 22:45:14 -04:00
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));
2022-05-13 21:53:03 -07:00
2018-01-05 07:04:08 +02:00
let layout = cx.layout_of(projected_ty);
self.val.deref(layout.align.abi).with_type(layout)
}
/// If this operand is a `Pair`, we return an aggregate with the two values.
/// For other cases, see `immediate`.
pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
2019-12-22 17:42:04 -05:00
bx: &mut Bx,
) -> V {
if let OperandValue::Pair(a, b) = self.val {
let llty = bx.cx().immediate_backend_type(self.layout);
2019-12-22 17:42:04 -05:00
debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
// Reconstruct the immediate aggregate.
let mut llpair = bx.cx().const_poison(llty);
llpair = bx.insert_value(llpair, a, 0);
llpair = bx.insert_value(llpair, b, 1);
llpair
} else {
self.immediate()
}
}
/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
llval: V,
2020-03-04 14:50:21 +00:00
layout: TyAndLayout<'tcx>,
) -> Self {
let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
2019-12-22 17:42:04 -05:00
debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
// Deconstruct the immediate aggregate.
let a_llval = bx.extract_value(llval, 0);
let b_llval = bx.extract_value(llval, 1);
OperandValue::Pair(a_llval, b_llval)
} else {
OperandValue::Immediate(llval)
};
OperandRef { val, layout }
}
pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
i: usize,
) -> Self {
let field = self.layout.field(bx.cx(), i);
let offset = self.layout.fields.offset(i);
if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
if let BackendRepr::Vector { count, .. } = self.layout.backend_repr
&& let BackendRepr::Memory { sized: true } = field.backend_repr
&& count.is_power_of_two()
{
assert_eq!(field.size, self.layout.size);
// This is being deprecated, but for now stdarch still needs it for
// Newtype vector of array, e.g. #[repr(simd)] struct S([i32; 4]);
let place = PlaceRef::alloca(bx, field);
self.val.store(bx, place.val.with_type(self.layout));
return bx.load_operand(place);
} else {
// Part of https://github.com/rust-lang/compiler-team/issues/838
bug!("Non-ref type {self:?} cannot project to ref field type {field:?}");
}
}
let val = if field.is_zst() {
OperandValue::ZeroSized
} else if field.size == self.layout.size {
assert_eq!(offset.bytes(), 0);
fx.codegen_transmute_operand(bx, *self, field).unwrap_or_else(|| {
bug!(
"Expected `codegen_transmute_operand` to handle equal-size \
field {i:?} projection from {self:?} to {field:?}"
)
})
} else {
let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
// Extract a scalar component from a pair.
(OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
if offset.bytes() == 0 {
assert_eq!(field.size, a.size(bx.cx()));
(Some(a), a_llval)
} else {
assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
assert_eq!(field.size, b.size(bx.cx()));
(Some(b), b_llval)
}
}
_ => {
span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)
}
};
OperandValue::Immediate(match field.backend_repr {
BackendRepr::Vector { .. } => imm,
BackendRepr::Scalar(out_scalar) => {
let Some(in_scalar) = in_scalar else {
span_bug!(
fx.mir.span,
"OperandRef::extract_field({:?}): missing input scalar for output scalar",
self
)
};
if in_scalar != out_scalar {
// If the backend and backend_immediate types might differ,
// flip back to the backend type then to the new immediate.
// This avoids nop truncations, but still handles things like
// Bools in union fields needs to be truncated.
let backend = bx.from_immediate(imm);
bx.to_immediate_scalar(backend, out_scalar)
} else {
imm
}
}
BackendRepr::ScalarPair(_, _) | BackendRepr::Memory { .. } => bug!(),
})
};
2019-12-22 17:42:04 -05:00
OperandRef { val, layout: field }
}
}
impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
/// Returns an `OperandValue` that's generally UB to use in any way.
///
/// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
/// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
///
/// Supports sized types only.
pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
layout: TyAndLayout<'tcx>,
) -> OperandValue<V> {
assert!(layout.is_sized());
if layout.is_zst() {
OperandValue::ZeroSized
} else if bx.cx().is_backend_immediate(layout) {
let ibty = bx.cx().immediate_backend_type(layout);
OperandValue::Immediate(bx.const_poison(ibty))
} else if bx.cx().is_backend_scalar_pair(layout) {
let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
} else {
let ptr = bx.cx().type_ptr();
OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
}
}
2018-09-14 17:48:57 +02:00
pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
dest: PlaceRef<'tcx, V>,
2018-09-14 17:48:57 +02:00
) {
self.store_with_flags(bx, dest, MemFlags::empty());
}
pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::VOLATILE);
}
pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
2018-07-14 23:28:39 +01:00
self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
}
pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
}
pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
2018-07-17 18:26:58 +03:00
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
2018-07-17 18:26:58 +03:00
flags: MemFlags,
) {
debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
match self {
OperandValue::ZeroSized => {
// Avoid generating stores of zero-sized values, because the only way to have a
// zero-sized value is through `undef`/`poison`, and the store itself is useless.
}
OperandValue::Ref(val) => {
assert!(dest.layout.is_sized(), "cannot directly store unsized values");
if val.llextra.is_some() {
bug!("cannot directly store unsized values");
}
bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
}
OperandValue::Immediate(s) => {
let val = bx.from_immediate(s);
bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
}
OperandValue::Pair(a, b) => {
let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
2022-02-19 00:48:49 +01:00
bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
};
let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
let val = bx.from_immediate(a);
let align = dest.val.align;
bx.store_with_flags(val, dest.val.llval, align, flags);
let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
let val = bx.from_immediate(b);
let align = dest.val.align.restrict_for_offset(b_offset);
bx.store_with_flags(val, llptr, align, flags);
}
}
}
pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
indirect_dest: PlaceRef<'tcx, V>,
) {
debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
// `indirect_dest` must have `*mut T` type. We extract `T` out of it.
2019-12-22 17:42:04 -05:00
let unsized_ty = indirect_dest
.layout
.ty
.builtin_deref(true)
2024-05-09 22:45:14 -04:00
.unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest));
2019-12-22 17:42:04 -05:00
let OperandValue::Ref(PlaceValue { llval: llptr, llextra: Some(llextra), .. }) = self
else {
bug!("store_unsized called with a sized value (or with an extern type)")
2019-12-22 17:42:04 -05:00
};
// Allocate an appropriate region on the stack, and copy the value into it. Since alloca
// doesn't support dynamic alignment, we allocate an extra align - 1 bytes, and align the
// pointer manually.
let (size, align) = size_of_val::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
let one = bx.const_usize(1);
let align_minus_1 = bx.sub(align, one);
let size_extra = bx.add(size, align_minus_1);
let min_align = Align::ONE;
2024-02-24 00:48:20 -05:00
let alloca = bx.dynamic_alloca(size_extra, min_align);
let address = bx.ptrtoint(alloca, bx.type_isize());
let neg_address = bx.neg(address);
let offset = bx.and(neg_address, align_minus_1);
let dst = bx.inbounds_ptradd(alloca, offset);
bx.memcpy(dst, min_align, llptr, min_align, size, MemFlags::empty());
// Store the allocated region and the extra to the indirect place.
let indirect_operand = OperandValue::Pair(dst, llextra);
indirect_operand.store(bx, indirect_dest);
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
fn maybe_codegen_consume_direct(
&mut self,
bx: &mut Bx,
2020-03-04 18:25:03 -03:00
place_ref: mir::PlaceRef<'tcx>,
) -> Option<OperandRef<'tcx, Bx::Value>> {
2019-07-02 20:29:45 +02:00
debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
match self.locals[place_ref.local] {
LocalRef::Operand(mut o) => {
// Moves out of scalar and scalar pair fields are trivial.
for elem in place_ref.projection.iter() {
match elem {
2025-02-20 18:28:48 +00:00
mir::ProjectionElem::Field(f, _) => {
assert!(
2024-04-21 16:11:01 -07:00
!o.layout.ty.is_any_ptr(),
"Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
but tried to access field {f:?} of pointer {o:?}",
);
o = o.extract_field(self, bx, f.index());
}
mir::ProjectionElem::Index(_)
| mir::ProjectionElem::ConstantIndex { .. } => {
// ZSTs don't require any actual memory access.
// FIXME(eddyb) deduplicate this with the identical
// checks in `codegen_consume` and `extract_field`.
let elem = o.layout.field(bx.cx(), 0);
if elem.is_zst() {
o = OperandRef::zero_sized(elem);
} else {
return None;
}
}
_ => return None,
2019-12-11 10:39:24 -03:00
}
}
Some(o)
}
LocalRef::PendingOperand => {
bug!("use of {:?} before def", place_ref);
}
LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
// watch out for locals that do not have an
// alloca; they are handled somewhat differently
None
}
}
}
pub fn codegen_consume(
&mut self,
bx: &mut Bx,
2020-03-04 18:25:03 -03:00
place_ref: mir::PlaceRef<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
2019-07-02 20:29:45 +02:00
debug!("codegen_consume(place_ref={:?})", place_ref);
2019-07-02 20:29:45 +02:00
let ty = self.monomorphized_place_ty(place_ref);
let layout = bx.cx().layout_of(ty);
// ZSTs don't require any actual memory access.
if layout.is_zst() {
return OperandRef::zero_sized(layout);
}
2019-07-02 20:29:45 +02:00
if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
return o;
}
// for most places, to consume them we just load them
// out from their home
2019-07-02 20:29:45 +02:00
let place = self.codegen_place(bx, place_ref);
bx.load_operand(place)
}
pub fn codegen_operand(
&mut self,
bx: &mut Bx,
2019-12-22 17:42:04 -05:00
operand: &mir::Operand<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
2018-05-08 16:10:16 +03:00
debug!("codegen_operand(operand={:?})", operand);
match *operand {
2019-12-22 17:42:04 -05:00
mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
self.codegen_consume(bx, place.as_ref())
}
2024-08-08 11:15:03 +01:00
mir::Operand::Constant(ref constant) => {
let constant_ty = self.monomorphize(constant.ty());
// Most SIMD vector constants should be passed as immediates.
// (In particular, some intrinsics really rely on this.)
if constant_ty.is_simd() {
// However, some SIMD types do not actually use the vector ABI
// (in particular, packed SIMD types do not). Ensure we exclude those.
let layout = bx.layout_of(constant_ty);
if let BackendRepr::Vector { .. } = layout.backend_repr {
2024-08-08 11:15:03 +01:00
let (llval, ty) = self.immediate_const_vector(bx, constant);
return OperandRef {
val: OperandValue::Immediate(llval),
layout: bx.layout_of(ty),
};
}
}
self.eval_mir_constant_to_operand(bx, constant)
}
}
}
}