2019-05-11 02:31:34 +03:00
|
|
|
//! Code related to parsing literals.
|
|
|
|
|
|
|
|
|
|
use crate::ast::{self, Ident, Lit, LitKind};
|
|
|
|
|
use crate::parse::parser::Parser;
|
|
|
|
|
use crate::parse::PResult;
|
|
|
|
|
use crate::parse::token::{self, Token};
|
|
|
|
|
use crate::parse::unescape::{unescape_str, unescape_char, unescape_byte_str, unescape_byte};
|
|
|
|
|
use crate::print::pprust;
|
|
|
|
|
use crate::symbol::{keywords, Symbol};
|
|
|
|
|
use crate::tokenstream::{TokenStream, TokenTree};
|
|
|
|
|
|
|
|
|
|
use errors::{Applicability, Handler};
|
|
|
|
|
use log::debug;
|
|
|
|
|
use rustc_data_structures::sync::Lrc;
|
|
|
|
|
use syntax_pos::Span;
|
|
|
|
|
|
|
|
|
|
use std::ascii;
|
|
|
|
|
|
|
|
|
|
macro_rules! err {
|
|
|
|
|
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
|
|
|
|
|
match $opt_diag {
|
|
|
|
|
Some(($span, $diag)) => { $($body)* }
|
|
|
|
|
None => return None,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl LitKind {
|
|
|
|
|
/// Converts literal token with a suffix into a semantic literal.
|
2019-05-11 16:03:27 +03:00
|
|
|
/// Works speculatively and may return `None` if diagnostic handler is not passed.
|
2019-05-11 02:31:34 +03:00
|
|
|
/// If diagnostic handler is passed, always returns `Some`,
|
|
|
|
|
/// possibly after reporting non-fatal errors and recovery.
|
|
|
|
|
fn from_lit_token(
|
|
|
|
|
lit: token::Lit,
|
|
|
|
|
suf: Option<Symbol>,
|
|
|
|
|
diag: Option<(Span, &Handler)>
|
|
|
|
|
) -> Option<LitKind> {
|
|
|
|
|
if suf.is_some() && !lit.may_have_suffix() {
|
|
|
|
|
err!(diag, |span, diag| {
|
|
|
|
|
expect_no_suffix(span, diag, &format!("a {}", lit.literal_name()), suf)
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Some(match lit {
|
|
|
|
|
token::Bool(i) => {
|
|
|
|
|
assert!(i == keywords::True.name() || i == keywords::False.name());
|
|
|
|
|
LitKind::Bool(i == keywords::True.name())
|
|
|
|
|
}
|
|
|
|
|
token::Byte(i) => {
|
|
|
|
|
match unescape_byte(&i.as_str()) {
|
|
|
|
|
Ok(c) => LitKind::Byte(c),
|
|
|
|
|
Err(_) => LitKind::Err(i),
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
token::Char(i) => {
|
|
|
|
|
match unescape_char(&i.as_str()) {
|
|
|
|
|
Ok(c) => LitKind::Char(c),
|
|
|
|
|
Err(_) => LitKind::Err(i),
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
token::Err(i) => LitKind::Err(i),
|
|
|
|
|
|
|
|
|
|
// There are some valid suffixes for integer and float literals,
|
|
|
|
|
// so all the handling is done internally.
|
|
|
|
|
token::Integer(s) => return integer_lit(&s.as_str(), suf, diag),
|
|
|
|
|
token::Float(s) => return float_lit(&s.as_str(), suf, diag),
|
|
|
|
|
|
|
|
|
|
token::Str_(mut sym) => {
|
|
|
|
|
// If there are no characters requiring special treatment we can
|
|
|
|
|
// reuse the symbol from the Token. Otherwise, we must generate a
|
|
|
|
|
// new symbol because the string in the LitKind is different to the
|
|
|
|
|
// string in the Token.
|
|
|
|
|
let mut has_error = false;
|
|
|
|
|
let s = &sym.as_str();
|
|
|
|
|
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
|
|
|
|
|
let mut buf = String::with_capacity(s.len());
|
|
|
|
|
unescape_str(s, &mut |_, unescaped_char| {
|
|
|
|
|
match unescaped_char {
|
|
|
|
|
Ok(c) => buf.push(c),
|
|
|
|
|
Err(_) => has_error = true,
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
if has_error {
|
|
|
|
|
return Some(LitKind::Err(sym));
|
|
|
|
|
}
|
|
|
|
|
sym = Symbol::intern(&buf)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LitKind::Str(sym, ast::StrStyle::Cooked)
|
|
|
|
|
}
|
|
|
|
|
token::StrRaw(mut sym, n) => {
|
|
|
|
|
// Ditto.
|
|
|
|
|
let s = &sym.as_str();
|
|
|
|
|
if s.contains('\r') {
|
|
|
|
|
sym = Symbol::intern(&raw_str_lit(s));
|
|
|
|
|
}
|
|
|
|
|
LitKind::Str(sym, ast::StrStyle::Raw(n))
|
|
|
|
|
}
|
|
|
|
|
token::ByteStr(i) => {
|
|
|
|
|
let s = &i.as_str();
|
|
|
|
|
let mut buf = Vec::with_capacity(s.len());
|
|
|
|
|
let mut has_error = false;
|
|
|
|
|
unescape_byte_str(s, &mut |_, unescaped_byte| {
|
|
|
|
|
match unescaped_byte {
|
|
|
|
|
Ok(c) => buf.push(c),
|
|
|
|
|
Err(_) => has_error = true,
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
if has_error {
|
|
|
|
|
return Some(LitKind::Err(i));
|
|
|
|
|
}
|
|
|
|
|
buf.shrink_to_fit();
|
|
|
|
|
LitKind::ByteStr(Lrc::new(buf))
|
|
|
|
|
}
|
|
|
|
|
token::ByteStrRaw(i, _) => {
|
|
|
|
|
LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Attempts to recover a token from semantic literal.
|
|
|
|
|
/// This function is used when the original token doesn't exist (e.g. the literal is created
|
|
|
|
|
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
|
|
|
|
|
pub fn to_lit_token(&self) -> (token::Lit, Option<Symbol>) {
|
|
|
|
|
match *self {
|
|
|
|
|
LitKind::Str(string, ast::StrStyle::Cooked) => {
|
|
|
|
|
let escaped = string.as_str().escape_default().to_string();
|
|
|
|
|
(token::Lit::Str_(Symbol::intern(&escaped)), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Str(string, ast::StrStyle::Raw(n)) => {
|
|
|
|
|
(token::Lit::StrRaw(string, n), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::ByteStr(ref bytes) => {
|
|
|
|
|
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
|
|
|
|
|
.map(Into::<char>::into).collect::<String>();
|
|
|
|
|
(token::Lit::ByteStr(Symbol::intern(&string)), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Byte(byte) => {
|
|
|
|
|
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
|
|
|
|
|
(token::Lit::Byte(Symbol::intern(&string)), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Char(ch) => {
|
|
|
|
|
let string: String = ch.escape_default().map(Into::<char>::into).collect();
|
|
|
|
|
(token::Lit::Char(Symbol::intern(&string)), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Int(n, ty) => {
|
|
|
|
|
let suffix = match ty {
|
|
|
|
|
ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())),
|
|
|
|
|
ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())),
|
|
|
|
|
ast::LitIntType::Unsuffixed => None,
|
|
|
|
|
};
|
|
|
|
|
(token::Lit::Integer(Symbol::intern(&n.to_string())), suffix)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Float(symbol, ty) => {
|
|
|
|
|
(token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string())))
|
|
|
|
|
}
|
|
|
|
|
LitKind::FloatUnsuffixed(symbol) => (token::Lit::Float(symbol), None),
|
|
|
|
|
LitKind::Bool(value) => {
|
|
|
|
|
let kw = if value { keywords::True } else { keywords::False };
|
|
|
|
|
(token::Lit::Bool(kw.name()), None)
|
|
|
|
|
}
|
|
|
|
|
LitKind::Err(val) => (token::Lit::Err(val), None),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Lit {
|
|
|
|
|
/// Converts literal token with a suffix into an AST literal.
|
2019-05-11 16:03:27 +03:00
|
|
|
/// Works speculatively and may return `None` if diagnostic handler is not passed.
|
2019-05-11 02:31:34 +03:00
|
|
|
/// If diagnostic handler is passed, may return `Some`,
|
|
|
|
|
/// possibly after reporting non-fatal errors and recovery, or `None` for irrecoverable errors.
|
|
|
|
|
crate fn from_token(
|
|
|
|
|
token: &token::Token,
|
|
|
|
|
span: Span,
|
|
|
|
|
diag: Option<(Span, &Handler)>,
|
|
|
|
|
) -> Option<Lit> {
|
|
|
|
|
let (token, suffix) = match *token {
|
|
|
|
|
token::Ident(ident, false) if ident.name == keywords::True.name() ||
|
|
|
|
|
ident.name == keywords::False.name() =>
|
|
|
|
|
(token::Bool(ident.name), None),
|
|
|
|
|
token::Literal(token, suffix) =>
|
|
|
|
|
(token, suffix),
|
|
|
|
|
token::Interpolated(ref nt) => {
|
|
|
|
|
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
|
|
|
|
|
if let ast::ExprKind::Lit(lit) = &expr.node {
|
|
|
|
|
return Some(lit.clone());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
_ => return None,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let node = LitKind::from_lit_token(token, suffix, diag)?;
|
|
|
|
|
Some(Lit { node, token, suffix, span })
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Attempts to recover an AST literal from semantic literal.
|
|
|
|
|
/// This function is used when the original token doesn't exist (e.g. the literal is created
|
|
|
|
|
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
|
|
|
|
|
pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
|
|
|
|
|
let (token, suffix) = node.to_lit_token();
|
|
|
|
|
Lit { node, token, suffix, span }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Losslessly convert an AST literal into a token stream.
|
|
|
|
|
crate fn tokens(&self) -> TokenStream {
|
|
|
|
|
let token = match self.token {
|
|
|
|
|
token::Bool(symbol) => Token::Ident(Ident::with_empty_ctxt(symbol), false),
|
|
|
|
|
token => Token::Literal(token, self.suffix),
|
|
|
|
|
};
|
|
|
|
|
TokenTree::Token(self.span, token).into()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<'a> Parser<'a> {
|
|
|
|
|
/// Matches `lit = true | false | token_lit`.
|
|
|
|
|
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
|
|
|
|
|
let diag = Some((self.span, &self.sess.span_diagnostic));
|
|
|
|
|
if let Some(lit) = Lit::from_token(&self.token, self.span, diag) {
|
|
|
|
|
self.bump();
|
|
|
|
|
return Ok(lit);
|
|
|
|
|
} else if self.token == token::Dot {
|
|
|
|
|
// Recover `.4` as `0.4`.
|
|
|
|
|
let recovered = self.look_ahead(1, |t| {
|
|
|
|
|
if let token::Literal(token::Integer(val), suf) = *t {
|
|
|
|
|
let next_span = self.look_ahead_span(1);
|
|
|
|
|
if self.span.hi() == next_span.lo() {
|
|
|
|
|
let sym = String::from("0.") + &val.as_str();
|
|
|
|
|
let token = token::Literal(token::Float(Symbol::intern(&sym)), suf);
|
|
|
|
|
return Some((token, self.span.to(next_span)));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
None
|
|
|
|
|
});
|
|
|
|
|
if let Some((token, span)) = recovered {
|
|
|
|
|
self.diagnostic()
|
|
|
|
|
.struct_span_err(span, "float literals must have an integer part")
|
|
|
|
|
.span_suggestion(
|
|
|
|
|
span,
|
|
|
|
|
"must have an integer part",
|
|
|
|
|
pprust::token_to_string(&token),
|
|
|
|
|
Applicability::MachineApplicable,
|
|
|
|
|
)
|
|
|
|
|
.emit();
|
|
|
|
|
let diag = Some((span, &self.sess.span_diagnostic));
|
|
|
|
|
if let Some(lit) = Lit::from_token(&token, span, diag) {
|
|
|
|
|
self.bump();
|
|
|
|
|
self.bump();
|
|
|
|
|
return Ok(lit);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Err(self.span_fatal(self.span, &format!("unexpected token: {}", self.this_token_descr())))
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
crate fn expect_no_suffix(sp: Span, diag: &Handler, kind: &str, suffix: Option<ast::Name>) {
|
|
|
|
|
match suffix {
|
|
|
|
|
None => {/* everything ok */}
|
|
|
|
|
Some(suf) => {
|
|
|
|
|
let text = suf.as_str();
|
|
|
|
|
if text.is_empty() {
|
|
|
|
|
diag.span_bug(sp, "found empty literal suffix in Some")
|
|
|
|
|
}
|
|
|
|
|
let mut err = if kind == "a tuple index" &&
|
|
|
|
|
["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
|
|
|
|
|
{
|
|
|
|
|
// #59553: warn instead of reject out of hand to allow the fix to percolate
|
|
|
|
|
// through the ecosystem when people fix their macros
|
|
|
|
|
let mut err = diag.struct_span_warn(
|
|
|
|
|
sp,
|
|
|
|
|
&format!("suffixes on {} are invalid", kind),
|
|
|
|
|
);
|
|
|
|
|
err.note(&format!(
|
|
|
|
|
"`{}` is *temporarily* accepted on tuple index fields as it was \
|
|
|
|
|
incorrectly accepted on stable for a few releases",
|
|
|
|
|
text,
|
|
|
|
|
));
|
|
|
|
|
err.help(
|
|
|
|
|
"on proc macros, you'll want to use `syn::Index::from` or \
|
|
|
|
|
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
|
|
|
|
|
to tuple field access",
|
|
|
|
|
);
|
|
|
|
|
err.note(
|
|
|
|
|
"for more context, see https://github.com/rust-lang/rust/issues/60210",
|
|
|
|
|
);
|
|
|
|
|
err
|
|
|
|
|
} else {
|
|
|
|
|
diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
|
|
|
|
|
};
|
|
|
|
|
err.span_label(sp, format!("invalid suffix `{}`", text));
|
|
|
|
|
err.emit();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Parses a string representing a raw string literal into its final form. The
|
|
|
|
|
/// only operation this does is convert embedded CRLF into a single LF.
|
|
|
|
|
fn raw_str_lit(lit: &str) -> String {
|
|
|
|
|
debug!("raw_str_lit: given {}", lit.escape_default());
|
|
|
|
|
let mut res = String::with_capacity(lit.len());
|
|
|
|
|
|
|
|
|
|
let mut chars = lit.chars().peekable();
|
|
|
|
|
while let Some(c) = chars.next() {
|
|
|
|
|
if c == '\r' {
|
|
|
|
|
if *chars.peek().unwrap() != '\n' {
|
|
|
|
|
panic!("lexer accepted bare CR");
|
|
|
|
|
}
|
|
|
|
|
chars.next();
|
|
|
|
|
res.push('\n');
|
|
|
|
|
} else {
|
|
|
|
|
res.push(c);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
res.shrink_to_fit();
|
|
|
|
|
res
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// check if `s` looks like i32 or u1234 etc.
|
|
|
|
|
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
|
|
|
|
|
s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
|
|
|
|
|
-> Option<LitKind> {
|
|
|
|
|
debug!("filtered_float_lit: {}, {:?}", data, suffix);
|
|
|
|
|
let suffix = match suffix {
|
|
|
|
|
Some(suffix) => suffix,
|
|
|
|
|
None => return Some(LitKind::FloatUnsuffixed(data)),
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
Some(match &*suffix.as_str() {
|
|
|
|
|
"f32" => LitKind::Float(data, ast::FloatTy::F32),
|
|
|
|
|
"f64" => LitKind::Float(data, ast::FloatTy::F64),
|
|
|
|
|
suf => {
|
|
|
|
|
err!(diag, |span, diag| {
|
|
|
|
|
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
|
|
|
|
|
// if it looks like a width, lets try to be helpful.
|
|
|
|
|
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
|
|
|
|
|
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
|
|
|
|
|
} else {
|
|
|
|
|
let msg = format!("invalid suffix `{}` for float literal", suf);
|
|
|
|
|
diag.struct_span_err(span, &msg)
|
|
|
|
|
.span_label(span, format!("invalid suffix `{}`", suf))
|
|
|
|
|
.help("valid suffixes are `f32` and `f64`")
|
|
|
|
|
.emit();
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
LitKind::FloatUnsuffixed(data)
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
}
|
|
|
|
|
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
|
|
|
|
|
-> Option<LitKind> {
|
|
|
|
|
debug!("float_lit: {:?}, {:?}", s, suffix);
|
|
|
|
|
// FIXME #2252: bounds checking float literals is deferred until trans
|
|
|
|
|
|
|
|
|
|
// Strip underscores without allocating a new String unless necessary.
|
|
|
|
|
let s2;
|
|
|
|
|
let s = if s.chars().any(|c| c == '_') {
|
|
|
|
|
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
|
|
|
|
|
&s2
|
|
|
|
|
} else {
|
|
|
|
|
s
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
filtered_float_lit(Symbol::intern(s), suffix, diag)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
|
|
|
|
|
-> Option<LitKind> {
|
|
|
|
|
// s can only be ascii, byte indexing is fine
|
|
|
|
|
|
|
|
|
|
// Strip underscores without allocating a new String unless necessary.
|
|
|
|
|
let s2;
|
|
|
|
|
let mut s = if s.chars().any(|c| c == '_') {
|
|
|
|
|
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
|
|
|
|
|
&s2
|
|
|
|
|
} else {
|
|
|
|
|
s
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
debug!("integer_lit: {}, {:?}", s, suffix);
|
|
|
|
|
|
|
|
|
|
let mut base = 10;
|
|
|
|
|
let orig = s;
|
|
|
|
|
let mut ty = ast::LitIntType::Unsuffixed;
|
|
|
|
|
|
|
|
|
|
if s.starts_with('0') && s.len() > 1 {
|
|
|
|
|
match s.as_bytes()[1] {
|
|
|
|
|
b'x' => base = 16,
|
|
|
|
|
b'o' => base = 8,
|
|
|
|
|
b'b' => base = 2,
|
|
|
|
|
_ => { }
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 1f64 and 2f32 etc. are valid float literals.
|
|
|
|
|
if let Some(suf) = suffix {
|
|
|
|
|
if looks_like_width_suffix(&['f'], &suf.as_str()) {
|
|
|
|
|
let err = match base {
|
|
|
|
|
16 => Some("hexadecimal float literal is not supported"),
|
|
|
|
|
8 => Some("octal float literal is not supported"),
|
|
|
|
|
2 => Some("binary float literal is not supported"),
|
|
|
|
|
_ => None,
|
|
|
|
|
};
|
|
|
|
|
if let Some(err) = err {
|
|
|
|
|
err!(diag, |span, diag| {
|
|
|
|
|
diag.struct_span_err(span, err)
|
|
|
|
|
.span_label(span, "not supported")
|
|
|
|
|
.emit();
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if base != 10 {
|
|
|
|
|
s = &s[2..];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if let Some(suf) = suffix {
|
|
|
|
|
if suf.as_str().is_empty() {
|
|
|
|
|
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
|
|
|
|
|
}
|
|
|
|
|
ty = match &*suf.as_str() {
|
|
|
|
|
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
|
|
|
|
|
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
|
|
|
|
|
"i16" => ast::LitIntType::Signed(ast::IntTy::I16),
|
|
|
|
|
"i32" => ast::LitIntType::Signed(ast::IntTy::I32),
|
|
|
|
|
"i64" => ast::LitIntType::Signed(ast::IntTy::I64),
|
|
|
|
|
"i128" => ast::LitIntType::Signed(ast::IntTy::I128),
|
|
|
|
|
"usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
|
|
|
|
|
"u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
|
|
|
|
|
"u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
|
|
|
|
|
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
|
|
|
|
|
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
|
|
|
|
|
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
|
|
|
|
|
suf => {
|
|
|
|
|
// i<digits> and u<digits> look like widths, so lets
|
|
|
|
|
// give an error message along those lines
|
|
|
|
|
err!(diag, |span, diag| {
|
|
|
|
|
if looks_like_width_suffix(&['i', 'u'], suf) {
|
|
|
|
|
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
|
|
|
|
|
diag.struct_span_err(span, &msg)
|
|
|
|
|
.help("valid widths are 8, 16, 32, 64 and 128")
|
|
|
|
|
.emit();
|
|
|
|
|
} else {
|
|
|
|
|
let msg = format!("invalid suffix `{}` for numeric literal", suf);
|
|
|
|
|
diag.struct_span_err(span, &msg)
|
|
|
|
|
.span_label(span, format!("invalid suffix `{}`", suf))
|
|
|
|
|
.help("the suffix must be one of the integral types \
|
|
|
|
|
(`u32`, `isize`, etc)")
|
|
|
|
|
.emit();
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
ty
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
|
|
|
|
|
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
|
|
|
|
|
|
|
|
|
|
Some(match u128::from_str_radix(s, base) {
|
|
|
|
|
Ok(r) => LitKind::Int(r, ty),
|
|
|
|
|
Err(_) => {
|
|
|
|
|
// small bases are lexed as if they were base 10, e.g, the string
|
|
|
|
|
// might be `0b10201`. This will cause the conversion above to fail,
|
|
|
|
|
// but these cases have errors in the lexer: we don't want to emit
|
|
|
|
|
// two errors, and we especially don't want to emit this error since
|
|
|
|
|
// it isn't necessarily true.
|
|
|
|
|
let already_errored = base < 10 &&
|
|
|
|
|
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
|
|
|
|
|
|
|
|
|
|
if !already_errored {
|
|
|
|
|
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
|
|
|
|
|
}
|
|
|
|
|
LitKind::Int(0, ty)
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
}
|