2.2 - 2

pezy

May 13, 2015

Selection-Sort (A)		\mathbf{Cost}	${f Time}$
1	for $j = 1$ to $A. length - 1$	c_1	n
2	min = j	c_2	n-1
3	for $i = j + 1$ to $A.length$	c_3	$\sum_{j=1}^{n-1} t_j$
4	if $A[i] < A[min]$	c_4	$\sum_{j=1}^{n-1} (t_j - 1)$
5	min = i	c_5	$0 \text{ to } \sum_{j=1}^{n-1} (t_j - 1)$
6	$\operatorname{swap}(A[min],A[j])$	c_6	n-1

We will now calculate the running time, T(n), of Selection-Sort:

$$T(n) = c_1 n + c_2 (n - 1) + c_3 \sum_{j=1}^{n-1} t_j + c_4 \sum_{j=1}^{n-1} (t_j - 1) + kc_5 \sum_{j=1}^{n-1} (t_j - 1) + c_6 (n - 1),$$

$$= c_1 n + (c_2 + c_6)(n - 1) + c_3 \sum_{j=1}^{n-1} t_j + (c_4 + kc_5) \sum_{j=1}^{n-1} (t_j - 1),$$

$$= c_1 n + (c_2 + c_6)(n - 1) + (c_3 + c_4 + kc_5) \sum_{j=1}^{n-1} t_j - (c_4 + kc_5)(n - 1),$$

$$= c_1 n + (c_2 + c_6 - c_4 - kc_5)(n - 1) + (c_3 + c_4 + kc_5) \sum_{j=1}^{n-1} t_j.$$
(1)

1 Best case running time

In the **BEST CASE** running time, the list of input will already be sorted. Thus, the body of **if** is never step in, and k = 0. we obtain that $t_j = j + 1$, for every choice of j. Thus,

$$\sum_{i=1}^{n-1} t_j = \frac{1}{2}n(n+1) - 1 = (\frac{n}{2} + 1)(n-1)$$

Substituting this into the last term of Eqn. (1) yields,

$$T(n) = c_1 n + (c_2 + c_6 - c_4)(n-1) + (c_3 + c_4)(\frac{n}{2} + 1)(n-1)$$
(2)

$$=\frac{c_3+c_4}{2}n^2+(c_1+c_2+\frac{c_3}{2}-\frac{c_4}{2}+c_6)n-(c_2+c_3+c_6)$$
(3)

which can be simplified to the linear equation $T(n) = An^2 + Bn + C$ where

$$A = \frac{c_3 + c_4}{2} > 0,$$

$$B = c_1 + c_2 + \frac{c_3}{2} - \frac{c_4}{2} + c_6, \text{ and,}$$

$$C = -c_2 - c_3 - c_6 < 0.$$

Therefore, the BEST CASE running time of the Selection-Sort Algorithm equals:

$$T(n) = An^2 + Bn + C$$

2 Worst case running time

We will now look at the WORST CASE for SELECTION-SORT:

- In the worst case, the **if** statement is invoked on every occasion.
- This means k=1

Substituting t_j with j into the last summation in Eqn. (1) yields,

$$\sum_{j=1}^{n-1} t_j = \frac{1}{2}n(n+1) - 1 = (\frac{n}{2} + 1)(n-1)$$

Thus, Eqn. (1) becomes,

$$T(n) = c_1 n + (c_2 + c_6 - c_4 - c_5)(n - 1) + (c_3 + c_4 + c_5)(\frac{n}{2} + 1)(n - 1),$$

= $\frac{c_3 + c_4 + c_5}{2} n^2 + (c_1 + c_2 + \frac{c_3}{2} - \frac{c_4}{2} - \frac{c_5}{2} + c_6)n - (c_2 + c_3 + c_6)$

a quadratic function of n, the input sequence length, where,

$$A' = \frac{c_3 + c_4 + c_5}{2} > 0,$$

$$B' = c_1 + c_2 + \frac{c_3}{2} - \frac{c_4}{2} - \frac{c_5}{2} + c_6, \text{ and,}$$

$$C' = -c_2 - c_3 - c_6 < 0.$$

Therefore, the WORST CASE running time of the SELECTION-SORT Algorithm also equals:

$$T(n) = An^2 + Bn + C$$