159201

Week 1

Summer 2014

% 1%
.y
A

Massey University

"a®" COLLEGE OF SCIENCES

Data Types

e Basic Data Types
e Integers, real, characters, boolean ...
e C++

- int

- float

- char

©
(=]
-
=
i —
o
-
=3
o
L

Te Kunenga

- bool (C has no boolean types, programmers use #define etc)

vy
fri g (‘;’
V.

Massey University

"a®" COLLEGE OF SCIENCES

Data Types

e Basic Data Types grouped together
e Structured Data Types:
e Arrays, strings, records

e In C++ we can use struct

(5]
g o
=
O =
= O
et
= 5
=g
O i
—

NN
|
N

Massey University

"a®" COLLEGE OF SCIENCES

Data Types

struct BookRecord {

char title[40];

float callnumber;
}i
BookRecord book;
book.callnumber = 5.265;

©
(=]
-
=
i —
o
-
=3
o
=

Te Kunenga

311
*
i
Rl 4
"’

> Massey University

EEEEEEEEEEEEEEEEE

Abstract Data Types (ADT)

e Specification separate from implementation
e Example:
- A book record consists of:

Title (max 40 characters)

©
(=]
-
=
i —
(+H)
-
=3
o
L

Te Kunenga

Call number (real)

Abstract Data Types (ADT)

e Advantages of ADTs

- Reduce details - allow focus to be on the
“main picture”

- Different implementations can be used -
e.g., array or linked-list

- Underlying implementation can be changed
or upgraded

- It Is convenient to implement an ADT as a
class

©
(=]
-
=
i —
o
-
=3
o
L

Te Kunenga

<& Massey University
"a®" COLLEGE OF SCIENCES

Revision of Arrays

e Remember arrays in C or C++7?7 Example:
- int x[10]; // ten elements x[0], x[1] ... x[9]

O 1 2 3 4 5 6 7 8 9 These are the index numbers

(1]
3 g
S s
O =
c P
=|=
g
(| -
-

vy
x g (‘*’
%

7 MasseyUniversity

"a®' COLLEGE OF SCIENCES

Revision of Arrays

Advantages of Arrays

Simple, Fast, Random access

Disadvantages of Arrays

Te Kunenga
ki Parehuroa

Every element if of the same data type
Fixed size - too small or too big at runtime

Difficult to insert or delete without leaving spaces § 5

© Massey University

2D arrays

Example:
int matrix[4][4];

At some point, matrix[2][2]=64;

o 1 2 3
0 -
1 S
2 64 % |
3 N

v MasseyUmverslty

"a®' COLLEGE OF SCIENCES

¥ y
E =%

2D arrays

e 2D Arrays in C/C++ are stored as a 1D array
- Row-major order

- Known in math as a matrix

Te Kunenga
ki Parehuroa

- Sparse matrix has few numbers and lots of g

elements with value = 0

<> Massey University

"a®' COLLEGE OF SCIENCES

Row-major X colum-major

Row-major order? How do we know?

#include <stdio.h>
int a: int b;

Int matrix[4][4];

main(){
for(a=0;a<4;a++){ %g
for(b=0;b<4;b++){ ‘Eé
printf("%Id ",&matrix[a][b]);//pointers |
} J
printf("\n"); U '

:}‘ g ‘*‘* . "
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

Row-major X colum-major
Output:
6293920 6293924 6293928 6293932
6293936 6293940 6293944 6293948
6293952 6293956 6293960 6293964
6293968 6293972 6293976 6293980

- the output may not the same for different machines, even for
different runs.

Te Kunenga
ki Parehuroa

- However, it follows a pattern: a space of 4 (bytes) between
elements within the same row.

- The first element in the second column is +4 bytes from the last s
element in the first row %

- row-major confirmed

<& Massey University
"a®' COLLEGE OF SCIENCES

Reference and pointers

Remember:

* a pointer (declare a pointer to any type)

new allocates memory (equivalent to C malloc())

& the address of a variable.

-> the element of a pointer (that points to a structure)

Te Kunenga
ki Parehuroa

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

Examples with *

#include <stdio.h>

Emain(){

int a=10;

int *b:

b=&ka;. //the address 1s the same
printf("a=%d and b=%d \n",a, *b);

Te Kunenga
ki Parehuroa

Result: a=10 and b=10

(# g :*‘» . .
<& Massey University
"a®' COLLEGE OF SCIENCES

Examples with funct(type *&)

1 #include <stdio.h>

20 1int b:

3 void functionl(int *a) { a=&b; }

4 void function2(int *&a) { a=&b: }

58main(){

6 int *a;

7 int x=10:

8 a=&x;

9 |. printf("a=%d ", *a); s 8
10 |. b=20; s 5
11 |. functionl(a); =
i printf("a=%d ", *a);
=1 |8 b=30; ;
14 function2(a): Y
1| 8 printf("a=%d \n", *a); 3
16 _} ,1 i 7

Result: 2?2 ?2 ?

k13
'r: Ciema :*

<> Massey University

"a®' COLLEGE OF SCIENCES

Examples with funct(type *&)

1 #include <stdio.h>

2 1nt b;

3 vold functionl(int *a) { a=&b; }

4 void function2(int *&a) { a=&b; }

58main(){

6 int *a;

7 int x=10;

8 a=&x;

o printf("a=%d ", *a); i

18 |. b=20: 5

110 functionl(a); 3

10| printf("a=%d ", *a); EE

1280 b=30;

Taan function2(a) ; :

ol printf("a=%d \n", *a); ey

L ‘} . "j\;i'
Result is: 10 10 30 N
NOT: 10 20 30 |

:}J g (*“ [n
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

State of memory at line 7

intb
? : :
' functioni(int *A)
Ox44 _ :
main() int *A
?
? g &
0x35 function2(int *&A) 2z
(g~
int x int *&A]
? ey
10 ' e
.
0x78 0x89 N4

:}J g (*“ [n
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

State of memory at line 9

intb
? : :
' functioni(int *A)
0x44 . _
main() int *A
?
int *a 0x97
0x78 5 ¢
0x35 function2(int *&A) 2z
(g~
int x int *&A * L
? OF
10 . e
.
0x78 0x89 N4

vy
x g (‘*’
g

7 MasseyUniversity

"a®' COLLEGE OF SCIENCES

State of memory at line 12

intb
=l functioni(int *A)
0x44] . :
main() int *A int *A
int *a 0x97 0x97
0x78 Passed 0x78 %E’
0x35 function2(int *&A) < g
(g~
int x int *&A
? O
10 . s d
Ty
0x78 0x89) I

(# g :*‘» . .
<& Massey University
"a®' COLLEGE OF SCIENCES

State of memory at line 15

int b
= function(int *A)
0x44 _ |
t main() int *A
?
int *a | 0x97
xad Passed 0x35 — % E
0x35 > function2(int *&A) s
- =
int x int *&A :
0x35 Copy Ox44 NSl
0 into address| | ()
0x78 0x89 (435 ﬁ

w8y

@ Massey University

"a®' COLLEGE OF SCIENCES

Examples with funct(type *&)

The trick is to pass a pointer to a pointer...

This can be done passing *& (typical for C++) or

** (in C).

Run the program codel alternative.cpp and play with the
different variables. Try to follow what is happening to
the addresses within the pointers.

Te Kunenga
ki Parehuroa

XAy

@ Massey University

"a®' COLLEGE OF SCIENCES

malloc() and free(), New, delete

In C, memory allocation/deallocation:

Malloc() and free()

#include <stdio.h>
#include =stdlib.h=

Emain(){
int a[le];//static, 10 places
int *b;//pointer only, no allocation yet .
b=(int*) malloc (10*sizeof(int)); S £
a[51=10; 3
b[5]1=16; °
printf("result: a=%d and b=%d\n",al[5],b[5]);

: free(b);
i 4

NOTE: using unallocated pointers or freeing twice leads . 4
to disaster... (segmentation fault) W

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

malloc() and free(), New, delete

In C++, memory allocation/deallocation:

New and delete

1 #include <stdio.h>
2
3 Emain(){
4 int a[l0];//static, 10 places
5 int *b;//pointer only, no allocation yet
6 b = new int[10];//allocate gg
7 a[5]1=10; 5 <
8 b[5]=10; <2
gl printf("result: a=%d and b=%d\n",a[5],b[5]); i
10 |. delete[] b;//deallocate (use object's destructor)
11 } A

NOTE: new and delete have specific roles in 0O Y A
(constructors and destructors), more in 159234 ‘ ’

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

What -> means?

Remember that “.” 1is used to refer to elements of
structures, e.g.

book.callnumber

However, when “book” 1s a pointer we have to refer to it
using “->", e.qg.
BookRecord book;

BookRecord *bookpointer;

Te Kunenga
ki Parehuroa

Main(){...
book.callnumber=10;

bookpointer->callnumber=10; e

y&

; """" { " n
<% MasseyUniversity
— " COLLEGE OF SCIENCES

©
(=]
-
-
i —
(+H)
-
=3
o
L

Te Kunenga

<& Massey University

'U‘ COLLEGE OF SCIENCES

Linked-lists

Linked-lists are sequences of connected nodes.
Linked-lists are empty at the start.

Nodes are added dynamically (at runtime).

Nodes contain pointers to other nodes.

The address of the list is the pointer to the first node.
Linked-lists can be used as an alternative to arrays.

Te Kunenga
ki Parehuroa

k13
'r: Ciema (‘*

<> Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

struct Node { //declaration
Int accnumber;
float balance;
struct Node *next;
&
typedef struct Node Node;
//this should reserve memory space for this struct...

Te Kunenga
ki Parehuroa

pointer

int float to a |
struct T

Node . £

<> Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

Until one declares a Node and specifically allocates memory
to it, no memory is allocated:

Node *A; //declare one pointer to a linked-list called 'A'
A = NULL;

Te Kunenga
ki Piirehuroa

NULL > NULL

REMEMBER: there is no place for an int or a float yet...
There is only a pointer to a Node, no allocated memory.

k13
'r: Ciema (‘*

<> Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

Lets add, manually, a new node on list A:
Node *temp; //declare a temporary pointer to a Node
temp = new Node;//allocate space
temp->accnumber=10;//load the values
temp->balance=1.5;

temp 0x21

Ox21

Te Kunenga
ki Piarehuroa

10 1.5 27

NULL > NULL e

k13
'r: Ciema (‘*

<> Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

The new element should be pointed by A. We can copy the
content of temp to A:

A = temp;

temp

0x21 0x21

10 1.5 ??

Te Kunenga
ki Piirehuroa

Ox21

:}J g (*“ [n
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

Linked-lists

A has now one element. But the new element points to a
random place in memory. Lets point it to NULL:

temp->next=NULL,; //(or A->next=NULL)

temp

0x21 0Ox21

10 1.5 NULL

Te Kunenga
ki Piirehuroa

Ox21

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

A->next ...

Ox21

Linked-lists

Now, if we want to refer to the first element of A:
A->accnumber
A->balance

temp

Ox21

0x21

10

1.5

NULL

Te Kunenga

ki Pirehuroa

:}‘ g (*“ [n
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

Linked-lists

We could now eliminate temp (we will see how to do this
properly inside a function)

But why do we need temp in the first place? Lets use temp to
create a second element instead of deleting it...

temp

Ox21

Te Kunenga
ki Piirehuroa

10 1.5 NULL

0x21 "

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

Suppose you want a second element linked to list A.

temp = new Node;

temp
0x44 Ox=1
10 1.5 NULL 5 2
A
- =
0x21 Ox44 :
SF

?? ?7? 29 »

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

Load values to it:
temp->accnumber=20;//load the wvalues

temp->balance=4.7;

temp->next=NULL; temp
Ox44 Ox21
10 1.5 NULL %g
3=
0x21 Ox44
%)

20 4.7 NULL |

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists

Then, link the second element to the first:

A->next=temp;

temp

©
95
A SIS
(L
-
0x21 :
p' -
1)

Ay
f

2

) MasseyUniversity

"a®' COLLEGE OF SCIENCES

Linked-lists

Rearranging the figure, this is the state of the linked-list at
this point...

A

Ox21

Discussion: what happens if we create more elements? N4

O0x44

1.5

Ox44

Te Kunenga
ki Piirehuroa

20 4.7 NULL

y A . L
& Massey University

"ams® COLLEGE OF SCIENCES

Linked-lists compared to arrays

N
hY

Linked-lists Arrays

Grows during runtime Fixed size (compilation time)
Dynamic memory allocation Static memory allocation
Easy to insert/delete in the middle Inserting elements leave empty spaces s S
in memory 5
§ =
Sequential access is fast Random access (index) =
’
slow fast ol
" | "\:’j‘\r
T
Complicated (needs extra functions to Simple 4

work) v

T
2
3
4
5
b
I
3]
9

10
11
12
13
14
13
16

- —

#include =stdio.h=>
Hstruct Node { //declaration
int accnumber;
float balance;
Node *next;
i T
Node *A, *B; /J/declaration
void AddNode (Node * & listpointer, int a, float b); g%
-2

Hint main() {

A = NULL; // ALL linked-lists start empty
B = NULL; |
AddNode (A, 123, 99.87); 3
AddNode (B, 789, 52.64); A

L3 ﬂ} & 4 '_' =

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

AddNode()

19 Ovoid AddNode (Node * & listpointer, int a, float b) {
20 | // add a new node to the FRONT of the list

21 | Node *temp;

22 temp = new Node;

23 temp-=accnumber = a;
24 temp-=balance = b;
25 temp-=next = listpointer;
26 listpointer = temp;
27 } s S
T
But wait a minute... 2z

This will not produce the same linked-list as before, as it will be L
inverted if we add in the same order! e

Can you think of two ways of adding nodes, at the HEAD or at the |
TAIL of the linked list? +

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

Reference and pointers

Subtle syntax in C/C++ can cause errors

A function can get parameters using pointers and/or references:

void functionl(Node * listpointer...

In this case, the pointer to listpointer is passed as reference
(a copy of the address is made). Changing listpointer does not
alter A or B

Te Kunenga
ki Parehuroa

void function2(Node * &listpointer...

In this case, the pointer is itself passed to the function, so
changing listpointer changes A or B...

Challenges:

1) Modify the AddNode() function (add to HEAD) to
add to the TAIL of the linked-list,

2) Modify the AddNode() function to add an
element AFTER a certain element (by value or
position of the element).

You will need to find the last element of the linked-
list by modifying the Search() function.

The answers are on Stream, study these solutions
carefully and understand exactly how to control
Nodes: add, delete and search for any Node.

Te Kunenga
» ki Piarehuroa

y&

; """" { " n
<% MasseyUniversity
— " COLLEGE OF SCIENCES

©
(=]
-
-
i —
(+H)
-
=3
o
L

Te Kunenga

Vi -
@ Massey University

EEEEEEEEEEEEEEEEE

Linked-lists Search and Remove

We know how to add nodes to our lists, but just
adding to the HEAD. How do we find the TAIL of a
linked list?

We also need some extra functions to deal with
elements, such as Search. Also, a function to delete
or remove nodes that we no longer need.

Te Kunenga
ki Parehuroa

We need to deal with pointers appropriately to
achieve that, it is easy to make a subtle mistake D
and crash... /9

Linked-lists Search

Search function:

[l void Search(Node *listpointer, int x) {
// search for the node with account number equal to x
Node *current:
current = listpointer;
1 while (true) {
if (current == NULL) { break; }

=] if (current-=accnumber == x) { §§
printf("Balance of %1 is %1.2f\n", x, current->balance); £

return; o

i current = current-=next; '
} s \f’”‘

printf("Account %1i is not in the list.\n", x);

} v L

2l

@ Massey University

"a®' COLLEGE OF SCIENCES

Linked-lists Search

Search function:

int main() {

A =NULL; // ALL linked-lists start empty
| AddNode(A, 1, 9.87);

AddNode (A, 2, 8.87);

AddNode (A, 3, 7.87);

Search(A,123);

Search(A,1);

Search(A,2); §§
Search(A,3); §§
} 2z
A
Account 123 is not in the list. e 3
Balance of 1 is 9.87 ' j_’]..
Balance of 2 is 8.87 7 .

Balance of 3 is 7.87

Search step-by-step
eCreate a pointer “current”, of same type as node

ecurrent Initially points to the list, which is the
first element of the linked-list

e At any point, iIf current is NULL = reached the
end of the list (last element)

e\We keep checking for accnumber and update
current=current->next;

e Note that we go through the entire list, and we

either find the accnumber we look for or reach the
end of the list

Te Kunenga
: ki Piirehuroa

Linked-lists Remove nodes

RemoveNode function:

B void RemoveNode (Node * & listpointer, int x) {
// remove the node containing account number x
Node *current, *prev;

current = listpointer;

prev = NULL;
L while (current '= NULL) {
1f (current-=accnumber == x) { break; }
prev = current; §§
current = current-=next; 2
} £
[

O if (prev == NULL) {
listpointer = listpointer-=next;
H } else {
prev-=next = current-=next; R
s o

delete current; 4,f?f"

© Massey University

RemoveNode step-by-step

e Two pointers, “current” and “prev”
ecurrent Initially points to the list
eprev Initially points to nothing (NULL)

eWhile current is not NULL, search the list until
find X. Keep swapping prev = current

e If X Is found, change prev pointer to jump one
element

*Now we can delete the element by deallocating
current 8

Te Kunenga
: ki Piirehuroa

:}J g (*“ [n
<& Massey University

Rl 4
"a®' COLLEGE OF SCIENCES

Suppose we want to remove element
accnumber==2:

1 —®= 123 R SR 5

s o
S 5
g
1 —* 123 9 = 5 °

1 —» 123 - N4

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

RemoveNode example

Usage

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);

AddNode (A, 5, 7.87); o
Search(A,2); g’%
RemoveNode (A, 2); S:
Search(A,2); - =

Balance of 2 is 7.87 e
Account 2 is not in the list. g 7

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

Question!

What happens Iif:

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);
AddNode (A, 5, 7.87);

Search(A,2); %E
RemoveNode (A, 2) ; o
Search(A,2); ﬁE

RemnveNnde{A,E}ﬂ

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

Question!

What happens Iif:

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);
AddNode (A, 5, 7.87);

Search(A,2); %E
RemoveNode (A, 2) ; o
Search(A,2); ﬁE

RemnveNnde{A,E}ﬂ

Balance of 2 is 7.87 '] |
Account 2 is not in the list. 7
Segmentation fault!!!! ;

© Massey University

Extra pointers

Pointers can be added to point to
rear
middle
one third etc...

Or a combination of the above

Te Kunenga
ki Parehuroa

Extra operations on the AddNode() and
RemoveNode()

New search functions can be devised. What is the ~ Jiig*
advantage?

2l

* == * ' [
<> Massey University
EEEEEEEEEEEEEEEEE

Vs,

Other types of linked-lists

Circular lists

List pointer Av | ,|B 1 ,|C L P
s o
. . c 9
Doubly-liked-lists £E
- =
List pointer — A 1 5 B S C > D 4 U
— «— < '

y&

; """" { " n
<% MasseyUniversity
— " COLLEGE OF SCIENCES

©
(=]
-
-
i —
(+H)
-
=3
o
L

Te Kunenga

<& Massey University

"a®' COLLEGE OF SCIENCES

Print all elements of a LL

Simple approach: scan LL until the end

void PrintLL(Node *listpointer) {
// print all elements
Node *current;

current = listpointer;

int element=1;

while (true) {

if (current == NULL) { break; } c S
& A=

printf("Element %d: Balance of acc %i is %1.2f\n", E%
= =

element, current->accnumber, current->balance); i:f

-

current = current->next;
element++;

}
printf("End of the list.\n");

© Massey University

More operations with Linked-lists

Extra Operations:

Concatenate - join two separate lists
Reverse - invert the order of the elements
Split —» separate the list in two

Insert a new node after a certain element

Te Kunenga
ki Parehuroa

Delete by element order (say, the 5™ element)
rather than by a known key

Ny
E ¥

7 MasseyUniversity

"a®' COLLEGE OF SCIENCES

Concatenate

Concatenate (join two separate lists)

The final pointer of list 1 should now point to list 2
first element

List 1 P S M ©

is | B N B g-, g

s

| _ S:

List 2 D] K i 2z
Concatenate S v D K H 4
Lists 1 and 2 P T -T— T T T e

<& Massey University

"a®' COLLEGE OF SCIENCES

Concatenate example

e Scan listpointerl to find the last element

* JoIin

[void Concatenate(Node * &listpointerl, Node * listpointer2) {

//Tind the last element of listpointerl, then join with listpointer2
Node *current, *prev;
current = listpointerl;
: prev = NULL;
= while (current !'= NULL) { <
prev = current; e S
: current = current-snext; 2
: } =2
. if (prev == NULL) { A~
//In this case listpointerl is emptly
printf("listl was empty, join anyway\n");
; ; listpointerl = listpointer2; y
=] I else { 3 b
//join lists /¥
printf("join\n"); e
: prev->next=listpointer2; Y
. t B!
L}

2l

<8 MasseyUniversity

"a®' COLLEGE OF SCIENCES

Concatenate example

Main Results
Element 1: Balance of acc 3 is 7.87
E int main() { Element 2: Balance of acc 2 is 8.87
ASSNDSEEA: 1, 9-87";:' Element 3: Balance of acc 1 is 9.87
AddNode (A, 2, 8.87);)
AddNode (A, 3, 7.87): End of the list. |
AddNode (B, 4, 6.97): Element 1: Balance of acc 6 is 5.78
AddNode (B, 5, 3.33); Element 2: Balance of acc 5 is 3.33
AddNode (B, 6, 5.78); Element 3: Balance of acc 4 is 6.97 [
PEINILL AR End of the list. £ 5
Print|.L (B); - 2z
Concatenate(A,B); Jjoin - =
! PrintLL(A); Element 1: Balance of acc 3 is 7.87
¥ Element 2: Balance of acc 2 is 8.87

Element 3: Balance of acc 1is 9.87 Sl
Element 4: Balance of acc 6 is 5.78 ("HI%
Element 5: Balance of acc 5is 3.33 [l
Element 6: Balance of acc 4 is 6.97 .
End of the list.

v MasseyUmverslty

"a®' COLLEGE OF SCIENCES

¥ -
E =%

Reverse

Invert the order of all the elements.

The pointer to the last element becomes the list,
the the pointer to the list becomes the last

element...

{1+
© o
£ S
X
(|
- =

Reverse List 1 o M N L »|P

© Massey University

Reverse
Many ways of achieving that...

E.g., two methods

Method 1: create a new LL, scan once to find how
many elements, copy the last one, and keep adding
nodes and scanning again. Copy address and
delete the original.

Te Kunenga
ki Parehuroa

Method 2: Scan once, swap the contents of the last
element with the first one, keep going until swap
the middle elements. 8

Ea¥ _
<& Massey University

"a®' COLLEGE OF SCIENCES

Reverse

We need code to search by position:

Node * SearchByPosition(Node *listpointer, int x) {
Node *current;
current = listpointer;
int pos=0;

while (true) {

if (current == NULL) { break; } g§
= =

O =

if (pos == x) { return current; } 5.2
.

A

current = current->next;
pos++;

} B[

printf("There are only %d elements in this list\n", x); return NULL; ¥ e

<& Massey University

'U‘ COLLEGE OF SCIENCES

Reverse method 1

Gl void ReverselLLl(Node * &listpointer) {
Node *current;

Node *prev;

Node *reversedcopy=NULL;

current = listpointer;

int numbelements=0;

B while (true) {//scan once

1f (current == NULL) { break; }
prev = current;

current = current-=next;
numbelements++;

}

E 1f(numbelements!=0){ .
= for(int count=0;count<numbelements;count++){ & o
Node *temp=SearchByPosition(listpointer, count);//find contents S 2
if(temp!=NULL) AddNode (reversedcopy, temp-=accnumber, temp-=balance);//copy contents 5'2
} o
listpointer=reversedcopy; - =
L return;
s
B else { A
printf("the list is empty, nothing to reverse\n"); ‘” &
return; -
} 9

Ay

‘@) MasseyUniversity

2,
"a®' COLLEGE OF SCIENCES

Reverse method 1

AddNode (A, 1
AddNode (A, 2,
AddNode (A, 3,
AddNode (A, 4
PrintLL(A);

ReverselLL1(A);
PrintLL (A);

9.87);
8.87),;
1.87);
6.97);

Element 1: Balance of acc 4 is 6.97
Element 2: Balance of acc 3 is 7.87
Element 3: Balance of acc 2 is 8.87
Element 4: Balance of acc 1 is 9.87
End of the list.

the list is reversed

Element 1: Balance of acc 1 is 9.87
Element 2: Balance of acc 2 is 8.87
Element 3: Balance of acc 3 is 7.87
Element 4: Balance of acc 4 is 6.97
End of the list

Te Kunenga

ki Piarehuroa

Reverse method 1

Question 1: what is missing in ReverselLL1?

This is known as a memory leaking problem...

Te Kunenga
ki Parehuroa

Question 2: is that efficient? How many ,
scans/access do we have to do?

<& Massey University

"a®' COLLEGE OF SCIENCES

Reverse method 2

1 void ReverselLlL2(Node * listpointer) {//Note we don't need & here
Node *current, *prev, *temp, *temp2;
current = listpointer;
int numbelements=0;
£l while (true) {//scan once
1f (current == NULL) { break; }
prev = current;
current = current-=next;
numbelements++;
¥
1f(numbelements!'=0){
for(int count=0;count<numbelements/2;count++){
temp=SearchByPosition(listpointer, count);
temp2=SearchByPosition(listpointer, numbelements-1l-count);
//swap values
int accnumber_temp=temp-=accnumber;
float balance temp=temp-=>balance;
temp->accnumber = temp2->accnumber;
temp->balance = temp2->balance; ,
temp2->accnumber = accnumber temp; S
temp2-=balance = balance temp;
printf("the list is reversed\n"); § 4
return; ;f”;
} (= %

~ else { printf("the list is empty, nothing to reverse\n"); return; }

| }

Te Kunenga
ki Piirehuroa

Ea¥ _
<& Massey University

"a®' COLLEGE OF SCIENCES

listpointer ———

4 697

3 7.87

2 8.87

1 9.87

listpointer ~———

1

9.87

3 7.87

2 8.87

4 697

listpointer ———

1 697

3 7.87

Te Kunenga

ki Pirehuroa

Circular Linked-lists

The last element points back to the first one
Adding nodes to the middle is easy...

Adding nodes to the beginning or end needs a
different operation.

E.g., iIf we add Z to the start of the LL as we did
before:

Z points to A
D now Qpints toZ

List pointer _ A] 15/B | 4»|C | 4+—»|D

p
]
L
l 9
) £

Te Kunenga
: ki Piirehuroa

List pointer —» Z JA | 1 /B | L1»|C | 4+—|D

vy
x g (‘*’
g

7 MasseyUniversity

"a®' COLLEGE OF SCIENCES

Circular Linked-lists

Question: When printing the linked-list, how do you
know you reached the end?

List pointer — /A | 45|/B | 4»|C | 4>

Te Kunenga
ki Parehuroa

l

List pointer —» Z

|
|
i

v MasseyUmverslty

"a®' COLLEGE OF SCIENCES

¥ -
E =%

Circular Linked-lists

Question: When printing the linked-list, how do you
know you reached the end?

Answer: current->next == listpointer

List pointer _ /A 15|/B | 4»|C | 4—|D

Te Kunenga
ki Parehuroa

l

List pointer —» Z

|
|
i

Circular Linked-lists

Exercise:
Modify the code for the function

void PrintLL(Node *listpointer)

So it prints a circular Linked-list without looping
forever

Te Kunenga
ki Parehuroa

<& Massey University

"a®' COLLEGE OF SCIENCES

Circular Linked-lists

Solution:

void CLL PrintLL(Node *listpointer) {
// print all elements
Node *current;

current = listpointer;

int element=1;

while (current->next != listpointer) {
printf("Element %d: Balance of acc %i is %1.2f\n", <
element, current->accnumber, current->balance); %E
current = current->next; EE
element++; -2

}

//print last element ‘-‘5

printf("Element %d: Balance of acc %i is %1.2f\n",
element, current->accnumber, current->balance); s

printf("End of the list.\n"); / -/ Q

DEX)

<@ Massey University

"a®' COLLEGE OF SCIENCES

Doubly-linked Linked-lists

Have two pointers:

Forward (next)
Backward (previous)

Advantages/disadvantages:

Search backwards, deal with neighbours simultaneously
More space in memory for the same amount of data
Operations have two pointers to update

Te Kunenga
ki Parehuroa

List pointer — A

A4
oy
A4
@
A
A 4
w)

A
A

<& Massey University

"a®' COLLEGE OF SCIENCES

Doubly-linked Linked-lists

#include <stdio.h>

struct Node { //declaration
int accnumber;
float balance;
Node *next;
Node *previous;

}i
Node *A, *B; //declaration

Te Kunenga
ki Parehuroa

—p» A

it
I
it
I
A

List pointer

Challenge:

1) Can you think of a better method to reverse a
linked-list, without any allocation or deallocation?

Te Kunenga
. ki Piarehuroa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

