
159201

Week 1

Summer 2014

Data Types
• Basic Data Types

• Integers, real, characters, boolean ...

• C++

– int

– float

– char

– bool (C has no boolean types, programmers use #define etc)

Data Types
• Basic Data Types grouped together

• Structured Data Types:

• Arrays, strings, records

• In C++ we can use struct

Data Types

struct BookRecord {

 char title[40];

 float callnumber;

};

BookRecord book;

book.callnumber = 5.265;

Abstract Data Types (ADT)
• Specification separate from implementation

• Example:

– A book record consists of:

• Title (max 40 characters)

• Call number (real)

Abstract Data Types (ADT)
• Advantages of ADTs

– Reduce details – allow focus to be on the
“main picture”

– Different implementations can be used –
e.g., array or linked-list

– Underlying implementation can be changed
or upgraded

– It is convenient to implement an ADT as a
class

Revision of Arrays
• Remember arrays in C or C++? Example:

– int x[10]; // ten elements x[0], x[1] ... x[9]

 0 1 2 3 4 5 6 7 8 9 These are the index numbers

Revision of Arrays
Advantages of Arrays

Simple, Fast, Random access

Disadvantages of Arrays

Every element if of the same data type

Fixed size – too small or too big at runtime

Difficult to insert or delete without leaving spaces

2D arrays
Example:

int matrix[4][4];

At some point, matrix[2][2]=64;

64

 0 1 2 3

0
1
2
3

2D arrays

• 2D Arrays in C/C++ are stored as a 1D array

– Row-major order

– Known in math as a matrix

– Sparse matrix has few numbers and lots of

elements with value = 0

Row-major X colum-major
 Row-major order? How do we know?

#include <stdio.h>

int a; int b;

int matrix[4][4];

main(){

for(a=0;a<4;a++){

for(b=0;b<4;b++){

printf("%ld ",&matrix[a][b]);//pointers

}

printf("\n");

}

}

Row-major X colum-major
 Output:

6293920 6293924 6293928 6293932

6293936 6293940 6293944 6293948

6293952 6293956 6293960 6293964

6293968 6293972 6293976 6293980

- the output may not the same for different machines, even for
different runs.

- However, it follows a pattern: a space of 4 (bytes) between
elements within the same row.

- The first element in the second column is +4 bytes from the last
element in the first row

→ row-major confirmed

Reference and pointers
Remember:

* a pointer (declare a pointer to any type)

new allocates memory (equivalent to C malloc())

& the address of a variable.

-> the element of a pointer (that points to a structure)

Examples with *

Result: a=10 and b=10

Examples with funct(type *&)

Result: ? ? ?

Examples with funct(type *&)

Result is: 10 10 30

NOT: 10 20 30

State of memory at line 7

?

int b

0x44

?

int *a

0x35

10

int x

0x78

?

int *A

0x97

?

int *&A

0x89

main()

function1(int *A)

function2(int *&A)

State of memory at line 9

?

int b

0x44

0x78

int *a

0x35

10

int x

0x78

?

int *A

0x97

?

int *&A

0x89

main()

function1(int *A)

function2(int *&A)

State of memory at line 12

20

int b

0x44

0x78

int *a

0x35

10

int x

0x78

0x78

int *A

0x97

?

int *&A

0x89

main()

function1(int *A)

function2(int *&A)
Passed 0x78

0x44

int *A

0x97

State of memory at line 15

30

int b

0x44

0x44

int *a

0x35

10

int x

0x78

main()

function1(int *A)

function2(int *&A)
Passed 0x35

?

int *A

0x97

0x35

int *&A

0x89

Copy 0x44
into address
0x35

Examples with funct(type *&)
The trick is to pass a pointer to a pointer...

This can be done passing *& (typical for C++) or

** (in C).

Run the program code1_alternative.cpp and play with the
different variables. Try to follow what is happening to
the addresses within the pointers.

malloc() and free(), New, delete
In C, memory allocation/deallocation:

Malloc() and free()

NOTE: using unallocated pointers or freeing twice leads
to disaster... (segmentation fault)

malloc() and free(), New, delete
In C++, memory allocation/deallocation:

New and delete

NOTE: new and delete have specific roles in OO
(constructors and destructors), more in 159234

What -> means?
Remember that “.” is used to refer to elements of
structures, e.g.

book.callnumber

However, when “book” is a pointer we have to refer to it
using “->”, e.g.

BookRecord book;

BookRecord *bookpointer;

...

Main(){...

book.callnumber=10;

bookpointer­>callnumber=10;

}

L02

Linked-lists
Linked-lists are sequences of connected nodes.

Linked-lists are empty at the start.

Nodes are added dynamically (at runtime).

Nodes contain pointers to other nodes.

The address of the list is the pointer to the first node.

Linked-lists can be used as an alternative to arrays.

Linked-lists
struct Node { //declaration

 int accnumber;

 float balance;

 struct Node *next;

};

typedef struct Node Node;

//this should reserve memory space for this struct...

floatint
pointer
to a
struct
Node

Linked-lists
Until one declares a Node and specifically allocates memory
to it, no memory is allocated:

Node *A; //declare one pointer to a linked-list called 'A'

A = NULL;

REMEMBER: there is no place for an int or a float yet...

There is only a pointer to a Node, no allocated memory.

NULL NULL

A

Linked-lists
Lets add, manually, a new node on list A:

Node *temp; //declare a temporary pointer to a Node

temp = new Node;//allocate space

temp->accnumber=10;//load the values

temp->balance=1.5;

NULL NULL

0x21
10 1.5 ??

A

temp 0x21

Linked-lists
The new element should be pointed by A. We can copy the
content of temp to A:

A = temp;

0x21

0x21

10 1.5 ??

0x21

A

temp

Linked-lists
A has now one element. But the new element points to a
random place in memory. Lets point it to NULL:

temp->next=NULL; //(or A->next=NULL)

0x21

0x21

10 1.5 NULL
A

temp

0x21

Linked-lists
Now, if we want to refer to the first element of A:

A->accnumber

A->balance

A->next ...

0x21

0x21

10 1.5 NULL

temp

A

0x21

Linked-lists
We could now eliminate temp (we will see how to do this
properly inside a function)

But why do we need temp in the first place? Lets use temp to
create a second element instead of deleting it...

0x21

10 1.5 NULL
A

temp

0x21

Linked-lists
Suppose you want a second element linked to list A.

temp = new Node;

0x21

0x44

10 1.5 NULL

?? ?? ??

A

temp

0x21

0x44

Linked-lists
Load values to it:

temp­>accnumber=20;//load the values

temp­>balance=4.7;

temp­>next=NULL;

A

temp

10 1.5 NULL

20 4.7 NULL

0x21

0x44

10 1.5 NULL

20 4.7 NULL

A

temp

0x21

0x44

Linked-lists
Then, link the second element to the first:

A­>next=temp;

0x21

0x44

10 1.5

Point
to

0x44

20 4.7 NULL

A

temp

0x21

0x44

Linked-lists
Rearranging the figure, this is the state of the linked-list at
this point...

Discussion: what happens if we create more elements?

0x21

20 4.7 NULL10 1.5 0x44

0x21 0x44

A

Linked-lists compared to arrays

Linked-lists Arrays

Grows during runtime Fixed size (compilation time)

Dynamic memory allocation Static memory allocation

Easy to insert/delete in the middle Inserting elements leave empty spaces
in memory

Sequential access is fast Random access (index)

slow fast

Complicated (needs extra functions to
work)

Simple

Sample Linked-list in C++

AddNode()

But wait a minute...

This will not produce the same linked-list as before, as it will be
inverted if we add in the same order!

Can you think of two ways of adding nodes, at the HEAD or at the
TAIL of the linked list?

Reference and pointers
Subtle syntax in C/C++ can cause errors

A function can get parameters using pointers and/or references:

void function1(Node * listpointer...

In this case, the pointer to listpointer is passed as reference
(a copy of the address is made). Changing listpointer does not
alter A or B

void function2(Node * &listpointer...

In this case, the pointer is itself passed to the function, so
changing listpointer changes A or B...

Challenges:
1) Modify the AddNode() function (add to HEAD) to
add to the TAIL of the linked-list.

2) Modify the AddNode() function to add an
element AFTER a certain element (by value or
position of the element).

You will need to find the last element of the linked-
list by modifying the Search() function.

The answers are on Stream, study these solutions
carefully and understand exactly how to control
Nodes: add, delete and search for any Node.

L03

Linked-lists Search and Remove
We know how to add nodes to our lists, but just
adding to the HEAD. How do we find the TAIL of a
linked list?

We also need some extra functions to deal with
elements, such as Search. Also, a function to delete
or remove nodes that we no longer need.

We need to deal with pointers appropriately to
achieve that, it is easy to make a subtle mistake
and crash...

Linked-lists Search
Search function:

Linked-lists Search
Search function:

Account 123 is not in the list.
Balance of 1 is 9.87
Balance of 2 is 8.87
Balance of 3 is 7.87

Search step-by-step
•Create a pointer “current”, of same type as node

•current initially points to the list, which is the
first element of the linked-list

•At any point, if current is NULL → reached the
end of the list (last element)

•We keep checking for accnumber and update
current=current­>next;

•Note that we go through the entire list, and we
either find the accnumber we look for or reach the
end of the list

Linked-lists Remove nodes
RemoveNode function:

RemoveNode step-by-step
•Two pointers, “current” and “prev”

•current initially points to the list

•prev initially points to nothing (NULL)

•While current is not NULL, search the list until
find X. Keep swapping prev = current

• If X is found, change prev pointer to jump one
element

•Now we can delete the element by deallocating
current

RemoveNode in pictures
Suppose we want to remove element
accnumber==2:

RemoveNode example
Usage

Balance of 2 is 7.87
Account 2 is not in the list.

Question!
What happens if:

Question!
What happens if:

Balance of 2 is 7.87
Account 2 is not in the list.
Segmentation fault!!!!

Extra pointers
Pointers can be added to point to

rear

middle

one third etc...

Or a combination of the above

Extra operations on the AddNode() and
RemoveNode()

New search functions can be devised. What is the
advantage?

Other types of linked-lists

Circular lists

Doubly-liked-lists

List pointer A B DC

List pointer A B C D

L04

Print all elements of a LL
 Simple approach: scan LL until the end
void PrintLL(Node *listpointer) {

// print all elements

Node *current;

 current = listpointer;

 int element=1;

 while (true) {

 if (current == NULL) { break; }

 printf("Element %d: Balance of acc %i is %1.2f\n",

 element, current­>accnumber, current­>balance);

 current = current­>next;

 element++;

 }

 printf("End of the list.\n");

}

More operations with Linked-lists
 Extra Operations:

Concatenate → join two separate lists

Reverse → invert the order of the elements

Split → separate the list in two

Insert a new node after a certain element

Delete by element order (say, the 5th element)
rather than by a known key

Concatenate
Concatenate (join two separate lists)

The final pointer of list 1 should now point to list 2
first element

List 2

List 1 P S M

D K H

Concatenate
Lists 1 and 2 P S M D K H

Concatenate example
• Scan listpointer1 to find the last element

• Join

Concatenate example
Main Results

Element 1: Balance of acc 3 is 7.87
Element 2: Balance of acc 2 is 8.87
Element 3: Balance of acc 1 is 9.87
End of the list.
Element 1: Balance of acc 6 is 5.78
Element 2: Balance of acc 5 is 3.33
Element 3: Balance of acc 4 is 6.97
End of the list.
join
Element 1: Balance of acc 3 is 7.87
Element 2: Balance of acc 2 is 8.87
Element 3: Balance of acc 1 is 9.87
Element 4: Balance of acc 6 is 5.78
Element 5: Balance of acc 5 is 3.33
Element 6: Balance of acc 4 is 6.97
End of the list.

Reverse
Invert the order of all the elements.

The pointer to the last element becomes the list,
the the pointer to the list becomes the last
element...

Reverse List 1

List 1 P S M

M S P

Reverse
Many ways of achieving that...

E.g., two methods

Method 1: create a new LL, scan once to find how
many elements, copy the last one, and keep adding
nodes and scanning again. Copy address and
delete the original.

Method 2: Scan once, swap the contents of the last
element with the first one, keep going until swap
the middle elements.

Reverse
We need code to search by position:
Node * SearchByPosition(Node *listpointer, int x) {

 Node *current;

 current = listpointer;

 int pos=0;

 while (true) {

 if (current == NULL) { break; }

 if (pos == x) { return current; }

 current = current­>next;

 pos++;

 }

 printf("There are only %d elements in this list\n", x); return NULL;

}

Reverse method 1

Reverse method 1

Element 1: Balance of acc 4 is 6.97
Element 2: Balance of acc 3 is 7.87
Element 3: Balance of acc 2 is 8.87
Element 4: Balance of acc 1 is 9.87
End of the list.
the list is reversed
Element 1: Balance of acc 1 is 9.87
Element 2: Balance of acc 2 is 8.87
Element 3: Balance of acc 3 is 7.87
Element 4: Balance of acc 4 is 6.97
End of the list

Reverse method 1

Question 1: what is missing in ReverseLL1?

This is known as a memory leaking problem...

Question 2: is that efficient? How many
scans/access do we have to do?

Reverse method 2

Reverse method 2

Circular Linked-lists
The last element points back to the first one

Adding nodes to the middle is easy...

Adding nodes to the beginning or end needs a
different operation.

E.g., if we add Z to the start of the LL as we did
before:

Z points to A

D now points to Z
List pointer A B DC

List pointer A B DCZ

Circular Linked-lists
Question: When printing the linked-list, how do you
know you reached the end?

List pointer A B DC

List pointer A B DCZ

Circular Linked-lists
Question: When printing the linked-list, how do you
know you reached the end?

Answer: current­>next == listpointer

List pointer A B DC

List pointer A B DCZ

Circular Linked-lists
Exercise:

Modify the code for the function

void PrintLL(Node *listpointer)

So it prints a circular Linked-list without looping
forever

Circular Linked-lists
Solution:
void CLL_PrintLL(Node *listpointer) {

// print all elements

Node *current;

 current = listpointer;

 int element=1;

 while (current­>next != listpointer) {

printf("Element %d: Balance of acc %i is %1.2f\n",

element, current­>accnumber, current­>balance);

current = current­>next;

element++;

 }

 //print last element

 printf("Element %d: Balance of acc %i is %1.2f\n",

 element, current­>accnumber, current­>balance);

 printf("End of the list.\n");

}

Doubly-linked Linked-lists
Have two pointers:

Forward (next)

Backward (previous)

Advantages/disadvantages:

Search backwards, deal with neighbours simultaneously

More space in memory for the same amount of data

Operations have two pointers to update

List pointer A B C D

Doubly-linked Linked-lists
#include <stdio.h>

struct Node { //declaration

 int accnumber;

 float balance;

 Node *next;

 Node *previous;

};

Node *A, *B; //declaration

List pointer A B C D

Challenge:

1) Can you think of a better method to reverse a
linked-list, without any allocation or deallocation?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

