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Data Types

e Basic Data Types
e Integers, real, characters, boolean ...
e C++

- int

- float

- char
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- bool (C has no boolean types, programmers use #define etc)
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Data Types

e Basic Data Types grouped together
e Structured Data Types:
e Arrays, strings, records

e In C++ we can use struct
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Data Types

struct BookRecord {

char title[40];

float callnumber;
}i
BookRecord book;
book.callnumber = 5.265;
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Abstract Data Types (ADT)

e Specification separate from implementation
e Example:
- A book record consists of:

Title (max 40 characters)
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Call number (real)




Abstract Data Types (ADT)

e Advantages of ADTs

- Reduce details - allow focus to be on the
“main picture”

- Different implementations can be used -
e.g., array or linked-list

- Underlying implementation can be changed
or upgraded

- It Is convenient to implement an ADT as a
class
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Revision of Arrays

e Remember arrays in C or C++7?7 Example:
- int x[10]; // ten elements x[0], x[1] ... x[9]

O 1 2 3 4 5 6 7 8 9 These are the index numbers
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Revision of Arrays

Advantages of Arrays

Simple, Fast, Random access

Disadvantages of Arrays

Te Kunenga
ki Parehuroa

Every element if of the same data type
Fixed size - too small or too big at runtime

Difficult to insert or delete without leaving spaces § 5
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2D arrays

Example:
int matrix[4][4];

At some point, matrix[2][2]=64;

o 1 2 3
0 -
1 S
2 64 % |
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2D arrays

e 2D Arrays in C/C++ are stored as a 1D array
- Row-major order

- Known in math as a matrix

Te Kunenga
ki Parehuroa

- Sparse matrix has few numbers and lots of g

elements with value = 0
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Row-major X colum-major

Row-major order? How do we know?

#include <stdio.h>
int a: int b;

Int matrix[4][4];

main(){
for(a=0;a<4;a++){ %g
for(b=0;b<4;b++){ ‘Eé
printf("%Id ",&matrix[a][b]);//pointers |
} J
printf("\n"); U '
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Row-major X colum-major
Output:
6293920 6293924 6293928 6293932
6293936 6293940 6293944 6293948
6293952 6293956 6293960 6293964
6293968 6293972 6293976 6293980

- the output may not the same for different machines, even for
different runs.

Te Kunenga
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- However, it follows a pattern: a space of 4 (bytes) between
elements within the same row.

- The first element in the second column is +4 bytes from the last s
element in the first row %

- row-major confirmed
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Reference and pointers

Remember:

* a pointer (declare a pointer to any type)

new allocates memory (equivalent to C malloc() )

& the address of a variable.

-> the element of a pointer (that points to a structure)

Te Kunenga
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Examples with *

#include <stdio.h>

Emain(){

int a=10;

int *b:

b=&ka;. //the address 1s the same
printf("a=%d and b=%d \n",a, *b);

Te Kunenga
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Result: a=10 and b=10
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Examples with funct(type *&)

1 #include <stdio.h>

20 1int b:

3 void functionl(int *a) { a=&b; }

4 void function2(int *&a) { a=&b: }

58main(){

6 int *a;

7 int x=10:

8 a=&x;

9 |. printf("a=%d ", *a); s 8
10 |. b=20; s 5
11 |. functionl(a); =
i printf("a=%d ", *a);
=1 |8 b=30; ;
14 function2(a): Y
1| 8 printf("a=%d \n", *a); 3
16 _} ,1 i 7

Result: 2?2 ?2 ?
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Examples with funct(type *&)

1 #include <stdio.h>

2 1nt b;

3 vold functionl(int *a) { a=&b; }

4 void function2(int *&a) { a=&b; }

58main(){

6 int *a;

7 int x=10;

8 a=&x;

o printf("a=%d ", *a); i

18 |. b=20: 5

110 functionl(a); 3

10| printf("a=%d ", *a); EE

1280 b=30;

Taan function2(a) ; :

ol printf("a=%d \n", *a); ey

L ‘} . "j\;i'
Result is: 10 10 30 N
NOT: 10 20 30 |
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State of memory at line 7

intb
? : :
' functioni(int *A)
Ox44 _ :
main() int *A
?
? g &
0x35 function2(int *&A) 2z
(g~
int x int *&A ]
? ey
10 ' e
.
0x78 0x89 N4
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State of memory at line 9

intb
? : :
' functioni(int *A)
0x44 . _
main() int *A
?
int *a 0x97
0x78 5 ¢
0x35 function2(int *&A) 2z
(g~
int x int *&A * L
? OF
10 . e
.
0x78 0x89 N4
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State of memory at line 12

intb
=l functioni(int *A)
0x44 ] . :
main() int *A int *A
int *a 0x97 0x97
0x78 Passed 0x78 %E’
0x35 function2(int *&A) < g
(g~
int x int *&A
? O
10 . s d
Ty
0x78 0x89 ) I
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State of memory at line 15

int b
= function(int *A)
0x44 _ |
t main() int *A
?
int *a | 0x97
xad Passed 0x35 — % E
0x35 > function2(int *&A) s
- =
int x int *&A :
0x35 Copy Ox44 NSl
0 into address| | ()
0x78 0x89 (435 ﬁ
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Examples with funct(type *&)

The trick is to pass a pointer to a pointer...

This can be done passing *& (typical for C++) or

** (in C).

Run the program codel alternative.cpp and play with the
different variables. Try to follow what is happening to
the addresses within the pointers.

Te Kunenga
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malloc() and free(), New, delete

In C, memory allocation/deallocation:

Malloc() and free()

#include <stdio.h>
#include =stdlib.h=

Emain(){
int a[le];//static, 10 places
int *b;//pointer only, no allocation yet .
b=(int*) malloc (10*sizeof(int)); S £
a[51=10; 3
b[5]1=16; °
printf("result: a=%d and b=%d\n",al[5],b[5]);

: free(b);
i 4

NOTE: using unallocated pointers or freeing twice leads . 4
to disaster... (segmentation fault) W
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malloc() and free(), New, delete

In C++, memory allocation/deallocation:

New and delete

1 #include <stdio.h>
2
3 Emain(){
4 int a[l0];//static, 10 places
5 int *b;//pointer only, no allocation yet
6 b = new int[10];//allocate gg
7 a[5]1=10; 5 <
8 b[5]=10; <2
gl printf("result: a=%d and b=%d\n",a[5],b[5]); i
10 |. delete[] b;//deallocate (use object's destructor)
11 } A

NOTE: new and delete have specific roles in 0O Y A
(constructors and destructors), more in 159234 ‘ ’




Ay

‘@) MasseyUniversity

2,
"a®'  COLLEGE OF SCIENCES

What -> means?

Remember that “.” 1is used to refer to elements of
structures, e.g.

book.callnumber

However, when “book” 1s a pointer we have to refer to it
using “->", e.qg.
BookRecord book;

BookRecord *bookpointer;

Te Kunenga
ki Parehuroa

Main(){...
book.callnumber=10;

bookpointer->callnumber=10; e
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Linked-lists

Linked-lists are sequences of connected nodes.
Linked-lists are empty at the start.

Nodes are added dynamically (at runtime).

Nodes contain pointers to other nodes.

The address of the list is the pointer to the first node.
Linked-lists can be used as an alternative to arrays.

Te Kunenga
ki Parehuroa
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Linked-lists

struct Node { //declaration
Int accnumber;
float balance;
struct Node *next;
&
typedef struct Node Node;
//this should reserve memory space for this struct...

Te Kunenga
ki Parehuroa

pointer

int float to a |
struct T

Node . £
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Linked-lists

Until one declares a Node and specifically allocates memory
to it, no memory is allocated:

Node *A; //declare one pointer to a linked-list called 'A'
A = NULL;

Te Kunenga
ki Piirehuroa

NULL > NULL

REMEMBER: there is no place for an int or a float yet...
There is only a pointer to a Node, no allocated memory.
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Linked-lists

Lets add, manually, a new node on list A:
Node *temp; //declare a temporary pointer to a Node
temp = new Node;//allocate space
temp->accnumber=10;//load the values
temp->balance=1.5;

temp 0x21

Ox21

Te Kunenga
ki Piarehuroa

10 1.5 27

NULL > NULL e
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Linked-lists

The new element should be pointed by A. We can copy the
content of temp to A:

A = temp;

temp

0x21 0x21

10 1.5 ??

Te Kunenga
ki Piirehuroa

Ox21
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Linked-lists

A has now one element. But the new element points to a
random place in memory. Lets point it to NULL:

temp->next=NULL,; //(or A->next=NULL)

temp

0x21 0Ox21

10 1.5 NULL

Te Kunenga
ki Piirehuroa

Ox21
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A->next ...

Ox21

Linked-lists

Now, if we want to refer to the first element of A:
A->accnumber
A->balance

temp

Ox21

0x21

10

1.5

NULL

Te Kunenga

ki Pirehuroa
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Linked-lists

We could now eliminate temp (we will see how to do this
properly inside a function)

But why do we need temp in the first place? Lets use temp to
create a second element instead of deleting it...

temp

Ox21

Te Kunenga
ki Piirehuroa

10 1.5 NULL

0x21 "
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Linked-lists

Suppose you want a second element linked to list A.

temp = new Node;

temp
0x44 Ox=1
10 1.5 NULL 5 2
A
- =
0x21 Ox44 :
SF

?? ?7? 29 »
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Linked-lists

Load values to it:
temp->accnumber=20;//load the wvalues

temp->balance=4.7;

temp->next=NULL; temp
Ox44 Ox21
10 1.5 NULL %g
3=
0x21 Ox44
%)

20 4.7 NULL |
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Linked-lists

Then, link the second element to the first:

A->next=temp;

temp

©
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p' -
1 )




Ay
f

2

) MasseyUniversity

"a®'  COLLEGE OF SCIENCES

Linked-lists

Rearranging the figure, this is the state of the linked-list at
this point...

A

Ox21

Discussion: what happens if we create more elements? N4

O0x44

1.5

Ox44

Te Kunenga
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20 4.7 NULL
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Linked-lists compared to arrays

N
hY

Linked-lists Arrays

Grows during runtime Fixed size (compilation time)
Dynamic memory allocation Static memory allocation
Easy to insert/delete in the middle Inserting elements leave empty spaces s S
in memory 5
§ =
Sequential access is fast Random access (index) =
’
slow fast ol
" | "\:’j‘\r
T
Complicated (needs extra functions to Simple 4

work) v
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#include =stdio.h=>
Hstruct Node { //declaration
int accnumber;
float balance;
Node *next;
i T
Node *A, *B; /J/declaration
void AddNode (Node * & listpointer, int a, float b); g%
-2

Hint main() {

A = NULL; // ALL linked-lists start empty
B = NULL; |
AddNode (A, 123, 99.87); 3
AddNode (B, 789, 52.64); A

L3 ﬂ} & 4 '_' =
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AddNode()

19 Ovoid AddNode (Node * & listpointer, int a, float b) {
20 | // add a new node to the FRONT of the list

21 | Node *temp;

22 temp = new Node;

23 temp-=accnumber = a;
24 temp-=balance = b;
25 temp-=next = listpointer;
26 listpointer = temp;
27 } s S
T
But wait a minute... 2z

This will not produce the same linked-list as before, as it will be L
inverted if we add in the same order! e

Can you think of two ways of adding nodes, at the HEAD or at the |
TAIL of the linked list? +
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Reference and pointers

Subtle syntax in C/C++ can cause errors

A function can get parameters using pointers and/or references:

void functionl( Node * listpointer...

In this case, the pointer to listpointer is passed as reference
(a copy of the address is made). Changing listpointer does not
alter A or B

Te Kunenga
ki Parehuroa

void function2( Node * &listpointer...

In this case, the pointer is itself passed to the function, so
changing listpointer changes A or B...




Challenges:

1) Modify the AddNode() function (add to HEAD) to
add to the TAIL of the linked-list,

2) Modify the AddNode() function to add an
element AFTER a certain element (by value or
position of the element).

You will need to find the last element of the linked-
list by modifying the Search() function.

The answers are on Stream, study these solutions
carefully and understand exactly how to control
Nodes: add, delete and search for any Node.

Te Kunenga
» ki Piarehuroa
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Linked-lists Search and Remove

We know how to add nodes to our lists, but just
adding to the HEAD. How do we find the TAIL of a
linked list?

We also need some extra functions to deal with
elements, such as Search. Also, a function to delete
or remove nodes that we no longer need.

Te Kunenga
ki Parehuroa

We need to deal with pointers appropriately to
achieve that, it is easy to make a subtle mistake D
and crash... /9




Linked-lists Search

Search function:

[l void Search(Node *listpointer, int x) {
// search for the node with account number equal to x
Node *current:
current = listpointer;
1  while (true) {
if (current == NULL) { break; }

=] if (current-=accnumber == x) { §§
printf("Balance of %1 is %1.2f\n", x, current->balance); £

return; o

i current = current-=next; '
} s \f’”‘

printf("Account %1i is not in the list.\n", x);

} v L
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Linked-lists Search

Search function:

int main() {

A =NULL; // ALL linked-lists start empty
| AddNode(A, 1, 9.87);

AddNode (A, 2, 8.87);

AddNode (A, 3, 7.87);

Search(A,123);

Search(A,1);

Search(A,2); §§
Search(A,3); §§
} 2z
A
Account 123 is not in the list. e 3
Balance of 1 is 9.87 ' j_’]..
Balance of 2 is 8.87 7 .

Balance of 3 is 7.87




Search step-by-step
eCreate a pointer “current”, of same type as node

ecurrent Initially points to the list, which is the
first element of the linked-list

e At any point, iIf current is NULL = reached the
end of the list (last element)

e\We keep checking for accnumber and update
current=current->next;

e Note that we go through the entire list, and we

either find the accnumber we look for or reach the
end of the list

Te Kunenga
: ki Piirehuroa



Linked-lists Remove nodes

RemoveNode function:

B void RemoveNode (Node * & listpointer, int x) {
// remove the node containing account number x
Node *current, *prev;

current = listpointer;

prev = NULL;
L  while (current '= NULL) {
1f (current-=accnumber == x) { break; }
prev = current; §§
current = current-=next; 2
} £
[

O if (prev == NULL) {
listpointer = listpointer-=next;
H } else {
prev-=next = current-=next; R
s o

delete current; 4,f?f"
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RemoveNode step-by-step

e Two pointers, “current” and “prev”
ecurrent Initially points to the list
eprev Initially points to nothing (NULL)

eWhile current is not NULL, search the list until
find X. Keep swapping prev = current

e If X Is found, change prev pointer to jump one
element

*Now we can delete the element by deallocating
current 8

Te Kunenga
: ki Piirehuroa
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Suppose we want to remove element
accnumber==2:

1 —®= 123 R SR 5

s o
S 5
g
1 —* 123 9 = 5 °

1 —» 123 - N4
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RemoveNode example

Usage

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);

AddNode (A, 5, 7.87); o
Search(A,2); g’%
RemoveNode (A, 2); S:
Search(A,2); - =

Balance of 2 is 7.87 e
Account 2 is not in the list. g 7
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Question!

What happens Iif:

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);
AddNode (A, 5, 7.87);

Search(A,2); %E
RemoveNode (A, 2) ; o
Search(A,2); ﬁE

RemnveNnde{A,E}ﬂ
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Question!

What happens Iif:

int main() {
A = NULL; // ALL linked-lists start empty
AddNode (A, 1, 9.87);
AddNode (A, 123, 8.87);
AddNode (A, 2, 7.87);
AddNode (A, 5, 7.87);

Search(A,2); %E
RemoveNode (A, 2) ; o
Search(A,2); ﬁE

RemnveNnde{A,E}ﬂ

Balance of 2 is 7.87 ' ] |
Account 2 is not in the list. 7
Segmentation fault!!!! ;
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Extra pointers

Pointers can be added to point to
rear
middle
one third etc...

Or a combination of the above

Te Kunenga
ki Parehuroa

Extra operations on the AddNode() and
RemoveNode()

New search functions can be devised. What is the ~ Jiig*
advantage?
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Other types of linked-lists

Circular lists

List pointer Av | ,|B 1 ,|C L P
s o
. . c 9
Doubly-liked-lists £E
- =
List pointer — A 1 5 B S C > D 4 U
— «— < '
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Print all elements of a LL

Simple approach: scan LL until the end

void PrintLL(Node *listpointer) {
// print all elements
Node *current;

current = listpointer;

int element=1;

while (true) {

if (current == NULL) { break; } c S
& A=

printf("Element %d: Balance of acc %i is %1.2f\n", E%
= =

element, current->accnumber, current->balance); i:f

-

current = current->next;
element++;

}
printf("End of the list.\n");
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More operations with Linked-lists

Extra Operations:

Concatenate - join two separate lists
Reverse - invert the order of the elements
Split —» separate the list in two

Insert a new node after a certain element

Te Kunenga
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Delete by element order (say, the 5™ element)
rather than by a known key
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Concatenate

Concatenate (join two separate lists)

The final pointer of list 1 should now point to list 2
first element

List 1 P S M ©

is | B N B g-, g

s

| _ S:

List 2 D ] K i 2z
Concatenate S v D K H 4
Lists 1 and 2 P T -T— T T T e
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Concatenate example

e Scan listpointerl to find the last element

* JoIin

[ void Concatenate(Node * &listpointerl, Node * listpointer2) {

//Tind the last element of listpointerl, then join with listpointer2
Node *current, *prev;
current = listpointerl;
: prev = NULL;
= while (current !'= NULL) { <
prev = current; e S
: current = current-snext; 2
: } =2
. if (prev == NULL) { A~
//In this case listpointerl is emptly
printf("listl was empty, join anyway\n");
; ; listpointerl = listpointer2; y
=] I else { 3 b
//join lists /¥
printf("join\n"); e
: prev->next=listpointer2; Y
. t B!
L}
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Concatenate example

Main Results
Element 1: Balance of acc 3 is 7.87
E int main() { Element 2: Balance of acc 2 is 8.87
ASSNDSEEA: 1, 9-87";:' Element 3: Balance of acc 1 is 9.87
AddNode (A, 2, 8.87); )
AddNode (A, 3, 7.87): End of the list. |
AddNode (B, 4, 6.97): Element 1: Balance of acc 6 is 5.78
AddNode (B, 5, 3.33); Element 2: Balance of acc 5 is 3.33
AddNode (B, 6, 5.78); Element 3: Balance of acc 4 is 6.97 [
PEINILL AR End of the list. £ 5
Print|.L (B); - 2z
Concatenate(A,B); Jjoin - =
! PrintLL(A); Element 1: Balance of acc 3 is 7.87
¥ Element 2: Balance of acc 2 is 8.87

Element 3: Balance of acc 1is 9.87 Sl
Element 4: Balance of acc 6 is 5.78  ("HI%
Element 5: Balance of acc 5is 3.33 [l
Element 6: Balance of acc 4 is 6.97 .
End of the list.
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Reverse

Invert the order of all the elements.

The pointer to the last element becomes the list,
the the pointer to the list becomes the last

element...

{1+
© o
£ S
X
(|
- =

Reverse List 1 o M N L »|P
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Reverse
Many ways of achieving that...

E.g., two methods

Method 1: create a new LL, scan once to find how
many elements, copy the last one, and keep adding
nodes and scanning again. Copy address and
delete the original.

Te Kunenga
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Method 2: Scan once, swap the contents of the last
element with the first one, keep going until swap
the middle elements. 8




Ea¥ _
<& Massey University

"a®'  COLLEGE OF SCIENCES

Reverse

We need code to search by position:

Node * SearchByPosition(Node *listpointer, int x) {
Node *current;
current = listpointer;
int pos=0;

while (true) {

if (current == NULL) { break; } g§
= =

O =

if (pos == x) { return current; } 5.2
.

A

current = current->next;
pos++;

} B[

printf("There are only %d elements in this list\n", x); return NULL; ¥ e
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Reverse method 1

Gl void ReverselLLl(Node * &listpointer) {
Node *current;

Node *prev;

Node *reversedcopy=NULL;

current = listpointer;

int numbelements=0;

B  while (true) {//scan once

1f (current == NULL) { break; }
prev = current;

current = current-=next;
numbelements++;

}

E 1f(numbelements!=0){ .
= for(int count=0;count<numbelements;count++){ & o
Node *temp=SearchByPosition(listpointer, count);//find contents S 2
if(temp!=NULL) AddNode (reversedcopy, temp-=accnumber, temp-=balance);//copy contents 5'2
} o
listpointer=reversedcopy; - =
L return;
s
B else { A
printf("the list is empty, nothing to reverse\n"); ‘” &
return; -
} 9
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Reverse method 1

AddNode (A, 1
AddNode (A, 2,
AddNode (A, 3,
AddNode (A, 4
PrintLL(A);

ReverselLL1(A);
PrintLL (A);

9.87);
8.87),;
1.87);
6.97);

Element 1: Balance of acc 4 is 6.97
Element 2: Balance of acc 3 is 7.87
Element 3: Balance of acc 2 is 8.87
Element 4: Balance of acc 1 is 9.87
End of the list.

the list is reversed

Element 1: Balance of acc 1 is 9.87
Element 2: Balance of acc 2 is 8.87
Element 3: Balance of acc 3 is 7.87
Element 4: Balance of acc 4 is 6.97
End of the list
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Reverse method 1

Question 1: what is missing in ReverselLL1?

This is known as a memory leaking problem...
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Question 2: is that efficient? How many ,
scans/access do we have to do?
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Reverse method 2

1 void ReverselLlL2(Node * listpointer) {//Note we don't need & here
Node *current, *prev, *temp, *temp2;
current = listpointer;
int numbelements=0;
£l  while (true) {//scan once
1f (current == NULL) { break; }
prev = current;
current = current-=next;
numbelements++;
¥
1f(numbelements!'=0){
for(int count=0;count<numbelements/2;count++){
temp=SearchByPosition(listpointer, count);
temp2=SearchByPosition(listpointer, numbelements-1l-count);
//swap values
int accnumber_temp=temp-=accnumber;
float balance temp=temp-=>balance;
temp->accnumber = temp2->accnumber;
temp->balance = temp2->balance; ,
temp2->accnumber = accnumber temp; S
temp2-=balance = balance temp;
printf("the list is reversed\n"); § 4
return; ;f”;
} ( = %

~ else { printf("the list is empty, nothing to reverse\n"); return; }

| }
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listpointer ———

4 697

3 7.87

2 8.87

1 9.87

listpointer ~———

1

9.87

3 7.87

2 8.87

4 697

listpointer ———

1 697

3 7.87
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Circular Linked-lists

The last element points back to the first one
Adding nodes to the middle is easy...

Adding nodes to the beginning or end needs a
different operation.

E.g., iIf we add Z to the start of the LL as we did
before:

Z points to A
D now Qpints toZ

List pointer _ A ] 15/B | 4»|C | 4+—»|D

p
]
L
l 9
) £
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List pointer —» Z JA | 1 /B | L1»|C | 4+—|D
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Circular Linked-lists

Question: When printing the linked-list, how do you
know you reached the end?

List pointer — /A | 45|/B | 4»|C | 4>
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List pointer —» Z

|
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Circular Linked-lists

Question: When printing the linked-list, how do you
know you reached the end?

Answer: current->next == listpointer

List pointer _ /A 15|/B | 4»|C | 4—|D
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List pointer —» Z

|
|
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Circular Linked-lists

Exercise:
Modify the code for the function

void PrintLL(Node *listpointer)

So it prints a circular Linked-list without looping
forever
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Circular Linked-lists

Solution:

void CLL PrintLL(Node *listpointer) {
// print all elements
Node *current;

current = listpointer;

int element=1;

while (current->next != listpointer) {
printf("Element %d: Balance of acc %i is %1.2f\n", <
element, current->accnumber, current->balance); %E
current = current->next; EE
element++; -2

}

//print last element ‘-‘5

printf("Element %d: Balance of acc %i is %1.2f\n",
element, current->accnumber, current->balance); s

printf("End of the list.\n"); / -/ Q
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Doubly-linked Linked-lists

Have two pointers:

Forward (next)
Backward (previous)

Advantages/disadvantages:

Search backwards, deal with neighbours simultaneously
More space in memory for the same amount of data
Operations have two pointers to update

Te Kunenga
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Doubly-linked Linked-lists

#include <stdio.h>

struct Node { //declaration
int accnumber;
float balance;
Node *next;
Node *previous;

}i
Node *A, *B; //declaration
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List pointer




Challenge:

1) Can you think of a better method to reverse a
linked-list, without any allocation or deallocation?
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