
© 2019 Joe James

Binary Search Trees

© 2019 Joe James

Tree

1

3

4 6 9

5
8

© 2019 Joe James

Tree

Node

1

3

4 6 9

5
8

© 2019 Joe James

Tree

Node

Edge

1

3

4 6 9

5
8

© 2019 Joe James

Tree

Node

Edge

Root

1

3

4 6 9

5
8

© 2019 Joe James

Parent

Child 1

3

4 6 9

5
8

© 2019 Joe James

Parent

Child

Siblings

1

3

4 6 9

5
8

© 2019 Joe James

Parent

Child

Leaf

1

3

4 6 9

5
8

© 2019 Joe James

14

Binary Tree - each
node can have up to
2 child nodes.

2

1

3

4 6 9

5
8

© 2019 Joe James

Subtree

1

3

4 6 9

5
8

© 2019 Joe James

Node 4’s
Ancestors

Node 4

1

3

4 6 9

5
8

© 2019 Joe James

1

3

4 6 9

5
8

Node 5’s
Descendants

© 2019 Joe James

Binary Search Tree
• each node is greater

than every node in its
left subtree

25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

25

Binary Search Tree

5

8

11 19 28

15

24

2 6 13

• each node is greater
than every node in its
left subtree

© 2019 Joe James

Binary Search Tree

25

5

8

11 19 28

15

24

2 6 13

• each node is greater
than every node in its
left subtree

© 2019 Joe James

Binary Search Tree

25

5

8

11 19 28

15

24

2 6 13

• each node is greater
than every node in its
left subtree

© 2019 Joe James

Binary Search Tree

25

5

8

11 19 28

15

24

2 6 13

• each node is greater
than every node in its
left subtree

• each node is less

than every node in its
right subtree

© 2019 Joe James

Binary Search Tree
• each node is greater

than every node in its
left subtree

• each node is less

than every node in its
right subtree 25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

Binary Search Tree

25

5

8

11 19 28

15

24

2 6 13

• each node is greater
than every node in its
left subtree

• each node is less

than every node in its
right subtree

© 2019 Joe James

BST Operations
• Insert

• Find

• Delete

• Get_size

• Traversals

25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Insert

25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert 12

25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert 12 < 15 ?12

25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert

12 < 8 ?12

25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert

12 < 11 ?12

25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert

12 < 13 ?12 25

5

8

11 19 28

15

24

2 6 13

• Start at root

• Always insert

as a leaf

© 2019 Joe James

BST Insert
• Start at root

• Always insert

as a leaf

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Find
• Start at root

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Find
• Start at root

19

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Find
• Start at root

19 < 15 ?

12
25

5

8

11 19 28

15

24

2 6 13

19

© 2019 Joe James

BST Find
• Start at root

19 < 24 ?

12
25

5

8

11 19 28

15

24

2 6 13

19

© 2019 Joe James

BST Find
• Start at root

• Return the data if

found, or False if
not found 19

12
25

5

8

11 28

15

24

2 6 13

© 2019 Joe James

BST Delete
3 possible cases:

• leaf node

• 1 child

• 2 children

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Delete
• leaf node

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Delete
• leaf node

• just delete the

leaf node

5

8

11 28

15

24

13

19

25
12

62

© 2019 Joe James

BST Delete
• 1 child

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Delete
• 1 child

• promote the child

to the target
node’s position

12
25

5

8

19

15

24

2 6 13

2811

© 2019 Joe James

BST Delete
• 2 children

12
25

5

8

11 19 28

15

24

2 6 13

© 2019 Joe James

BST Delete
• 2 children

12
25

5

8

11 19 28

15

24

2 6 13

24

© 2019 Joe James

BST Delete
• 2 children

Find the next higher
node

12
25

5

8

11 19 28

15

24

2 6 13

24

© 2019 Joe James

BST Delete
• 2 children

24

Find the next higher
node

12

5

8

11 19 28

15

24

2 6 13 25

© 2019 Joe James

BST Delete
• 2 children

24

12

5

8

11 19 28

15

24

2 6 13 25

Find the next  
higher node,

change 24 to 25, then
delete node 25

© 2019 Joe James

BST Delete
• 2 children

24

12

5

8

11 19 28

15

25

2 6 13

Find the next  
higher node,

change 24 to 25, then
delete node 25

© 2019 Joe James
7

BST Delete
• 2 children

4

12

4

8

11 19 28

15

25

2 6 13

Find the next  
higher node,

© 2019 Joe James
7

BST Delete
• 2 children

4

12

4

8

11 19 28

15

25

2 6 13

Find the next  
higher node,

change 4 to 6, then
delete node 6

© 2019 Joe James

BST Delete
• 2 children

4

12

8

11 19 28

15

25

2 13

Find the next  
higher node,

change 4 to 6, then
delete node 6

7

6

© 2019 Joe James

size = 1

 + size(left subtree)

 + size(right subtree) 1

3

4 6 9

5
8

Get_size

Returns number of nodes.

Works recursively

© 2019 Joe James

Visit root before
visiting the root’s
subtrees.

1

3

4 6 9

5
8

Preorder Traversal
1

2

3 4

5

6 7

© 2019 Joe James

Visit root between
visiting the root’s
subtrees.

Gives values in sorted
order.

1

3

4 6 9

5
8

Inorder Traversal
4

2

1 3

6

5 7

© 2019 Joe James

Advantages of Binary Search Trees?

© 2019 Joe James

Advantages of Binary Search Trees?

Because trees use recursion for
most operations, they are fairly

easy to implement.

© 2019 Joe James

SPEED
Advantages of Binary Search Trees?

© 2019 Joe James

SPEED
Advantages of Binary Search Trees?

Insert, Delete, Find in
O(h) = O(log n)

© 2019 Joe James

SPEED
Advantages of Binary Search Trees?

In a balanced BST  
with 10,000,000 nodes  

Find takes 30 comparisons!

© 2019 Joe James

SPEED
Advantages of Binary Search Trees?

Why are trees so fast?
Because each comparison cuts
in half the number of nodes to

search.

