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14

Binary Tree - each 
node can have up to 
2 child nodes.
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Binary Search Tree 
• each node is greater 

than every node in its 
left subtree
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BST Operations
• Insert

• Find

• Delete

• Get_size

• Traversals
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BST Find
• Start at root

• Return the data if 

found, or False if 
not found 19

12
25

5

8

11 28

15

24

2 6 13



© 2019 Joe James

BST Delete
3 possible cases:

• leaf node

• 1 child

• 2 children
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BST Delete
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BST Delete
• 1 child

• promote the child 

to the target 
node’s position
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    + size(left subtree) 
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Get_size

Returns number of nodes.

Works recursively
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Visit root before 
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Visit root between 
visiting the root’s 
subtrees.

Gives values in sorted 
order.
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Advantages of Binary Search Trees?

Because trees use recursion for 
most operations, they are fairly 

easy to implement.
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SPEED
Advantages of Binary Search Trees?

Insert, Delete, Find in 
O(h) = O(log n)
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SPEED
Advantages of Binary Search Trees?

In a balanced BST  
with 10,000,000 nodes  

Find takes 30 comparisons!
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SPEED
Advantages of Binary Search Trees?

Why are trees so fast?  
Because each comparison cuts 
in half the number of nodes to 

search.


