139 lines
3.7 KiB
Plaintext
139 lines
3.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# 1. Fill the missing pieces of the `count_even_numbers` function\n",
|
|
"Fill `____` pieces of the `count_even_numbers` implemention in order to pass the assertions. You can assume that `numbers` argument is a list of integers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"____ count_even_numbers(numbers):\n",
|
|
" count = 0\n",
|
|
" for num in ____:\n",
|
|
" if ____ % 2 == ____:\n",
|
|
" count += ____\n",
|
|
" _____ _____"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"editable": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"assert count_even_numbers([1, 2, 3, 4, 5, 6]) == 3\n",
|
|
"assert count_even_numbers([1, 3, 5, 7]) == 0\n",
|
|
"assert count_even_numbers([-2, 2, -10, 8]) == 4"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# 2. Searching for wanted people\n",
|
|
"Implement `find_wanted_people` function which takes a list of names (strings) as argument. The function should return a list of names which are present both in `WANTED_PEOPLE` and in the name list given as argument to the function."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"editable": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"WANTED_PEOPLE = [\"John Doe\", \"Clint Eastwood\", \"Chuck Norris\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Your implementation here"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"editable": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"people_to_check1 = [\"Donald Duck\", \"Clint Eastwood\", \"John Doe\", \"Barack Obama\"]\n",
|
|
"wanted1 = find_wanted_people(people_to_check1)\n",
|
|
"assert len(wanted1) == 2\n",
|
|
"assert \"John Doe\" in wanted1\n",
|
|
"assert \"Clint Eastwood\" in wanted1\n",
|
|
"\n",
|
|
"people_to_check2 = [\"Donald Duck\", \"Mickey Mouse\", \"Zorro\", \"Superman\", \"Robin Hood\"]\n",
|
|
"wanted2 = find_wanted_people(people_to_check2)\n",
|
|
"assert wanted2 == []"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# 3. Counting average length of words in a sentence\n",
|
|
"Create a function `average_length_of_words` which takes a string as an argument and returns the average length of the words in the string. You can assume that there is a single space between each word and that the input does not have punctuation. The result should be rounded to one decimal place (hint: see [`round`](https://docs.python.org/3/library/functions.html#round))."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Your implementation here"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"editable": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"assert average_length_of_words(\"only four lett erwo rdss\") == 4\n",
|
|
"assert average_length_of_words(\"one two three\") == 3.7\n",
|
|
"assert average_length_of_words(\"one two three four\") == 3.8\n",
|
|
"assert average_length_of_words(\"\") == 0"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|