"🎉 Initial release: AI Proxy Worker v1.0"

This commit is contained in:
Noah Qin
2025-08-17 19:59:10 +08:00
commit 9a971aa646
35 changed files with 13572 additions and 0 deletions

636
docs/API-Reference.en.md Normal file
View File

@@ -0,0 +1,636 @@
# API Reference
<div align="center">
**🌍 Language / 语言**
[🇺🇸 English](./API-Reference.en.md) | [🇨🇳 中文](./API-Reference.md)
</div>
AI Proxy Worker provides a simple yet powerful RESTful API that is fully compatible with OpenAI's Chat Completions API format, allowing you to easily integrate it into existing projects.
> **Current Support**: DeepSeek API (v1.0)
> **Future Plans**: Multi-AI service provider support including OpenAI, Claude, Gemini (v2.0)
## 🌐 Basic Information
### Base URL
```
https://your-worker.workers.dev
```
### Authentication
```http
Authorization: Bearer YOUR_PROXY_KEY
```
### Content-Type
```http
Content-Type: application/json
```
## 📚 API Endpoints
### 1. Health Check
Check service status and connectivity.
**Request:**
```http
GET /
```
**Response:**
```json
{
"status": "ok",
"service": "AI Proxy Worker",
"timestamp": "2025-01-01T12:00:00.000Z"
}
```
**Example:**
```bash
curl https://your-worker.workers.dev/
```
### 2. Chat Completions
Interact with AI models, supports both streaming and non-streaming responses.
**Request:**
```http
POST /chat
```
**Headers:**
```http
Authorization: Bearer YOUR_PROXY_KEY
Content-Type: application/json
Accept: application/json # Non-streaming
Accept: text/event-stream # Streaming
```
**Request Body:**
```json
{
"model": "deepseek-chat",
"messages": [
{
"role": "system",
"content": "You are a helpful AI assistant."
},
{
"role": "user",
"content": "Hello!"
}
],
"stream": false,
"max_tokens": 2048
}
```
## 🤖 Supported Models
### deepseek-chat
- **Use Case**: General conversation and text generation
- **Architecture**: Based on DeepSeek-V3 architecture
- **Features**: Suitable for daily conversations, content creation, text understanding
- **Context Length**: 64K tokens
- **Recommended Scenarios**: General text generation, conversational applications
### deepseek-reasoner
- **Use Case**: Complex reasoning and logical thinking
- **Architecture**: Based on DeepSeek-R1 architecture
- **Features**: Math problems, logical reasoning, code analysis, complex reasoning
- **Context Length**: 64K tokens
- **Recommended Scenarios**: Tasks requiring deep thinking
> **Note**: Model specifications and capabilities may change with DeepSeek updates. Check [DeepSeek Official Documentation](https://platform.deepseek.com/) for latest information.
## 📝 Request Parameters
### Required Parameters
| Parameter | Type | Description |
|-----------|------|-------------|
| `model` | string | Model name to use |
| `messages` | array | Array of conversation messages |
### Optional Parameters
| Parameter | Type | Default | Description | Support Status |
|-----------|------|---------|-------------|----------------|
| `stream` | boolean | false | Enable streaming response | ✅ Fully supported |
| `max_tokens` | number | - | Maximum tokens to generate | ✅ Fully supported |
| `temperature` | number | 1.0 | Control randomness (0-2) | ⚠️ May not work |
| `top_p` | number | 1.0 | Nucleus sampling parameter (0-1) | ⚠️ May not work |
| `frequency_penalty` | number | 0 | Frequency penalty (-2 to 2) | ⚠️ May not work |
| `presence_penalty` | number | 0 | Presence penalty (-2 to 2) | ⚠️ May not work |
| `stop` | array/string | null | Stop sequences | ✅ Supported |
| `seed` | number | null | Random seed for consistent output | ✅ Supported |
> **Note**: Parameters marked "⚠️ May not work" may not have the expected effect due to DeepSeek API limitations. We recommend primarily using `stream`, `max_tokens`, `stop`, and `seed` parameters.
### Messages Format
Each message object contains:
```json
{
"role": "user|assistant|system",
"content": "Message content"
}
```
**Role Descriptions:**
- `system`: System prompt, defines AI behavior
- `user`: User input
- `assistant`: AI response
## 📤 Response Format
### Non-streaming Response
**Success Response:**
```json
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "deepseek-chat",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! I'm DeepSeek, happy to help you."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 20,
"completion_tokens": 15,
"total_tokens": 35
}
}
```
### Streaming Response
When `stream: true` is enabled, response is in Server-Sent Events (SSE) format:
```
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"deepseek-chat","choices":[{"index":0,"delta":{"role":"assistant"},"finish_reason":null}]}
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"deepseek-chat","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"deepseek-chat","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}
data: {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1677652288,"model":"deepseek-chat","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}
data: [DONE]
```
## ⚠️ **Important: Parameter Compatibility**
According to DeepSeek official documentation, the following parameters may not work as expected:
- `temperature` - May be ignored, DeepSeek API may use fixed temperature values
- `top_p` - May not work
- `frequency_penalty` - May not work
- `presence_penalty` - May not work
**Recommended Approach:**
- Primarily use `model`, `messages`, `max_tokens`, `stream`, and `stop` parameters
- To control generation behavior, use `system` messages to guide the model
- You can try these parameters during testing, but don't rely on their effects
**Example - Recommended Request Format:**
```json
{
"model": "deepseek-chat",
"messages": [
{
"role": "system",
"content": "Please answer concisely, don't be overly detailed."
},
{
"role": "user",
"content": "What is artificial intelligence?"
}
],
"max_tokens": 500,
"stream": false
}
```
## 🔧 Complete Examples
### cURL Examples
**Non-streaming Request:**
```bash
curl -X POST https://your-worker.workers.dev/chat \
-H "Authorization: Bearer YOUR_PROXY_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "deepseek-chat",
"messages": [
{
"role": "system",
"content": "You are a professional programming assistant."
},
{
"role": "user",
"content": "Please write a Python quicksort function for me."
}
],
"max_tokens": 1000
}'
```
**Streaming Request:**
```bash
curl -X POST https://your-worker.workers.dev/chat \
-H "Authorization: Bearer YOUR_PROXY_KEY" \
-H "Content-Type: application/json" \
-H "Accept: text/event-stream" \
-d '{
"model": "deepseek-chat",
"messages": [
{"role": "user", "content": "Write a poem about programming"}
],
"stream": true
}'
```
### JavaScript Examples
**Basic Call:**
```javascript
async function callAI(message) {
const response = await fetch('https://your-worker.workers.dev/chat', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_PROXY_KEY',
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: 'deepseek-chat',
messages: [
{ role: 'user', content: message }
],
max_tokens: 1000
})
});
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
const data = await response.json();
return data.choices[0].message.content;
}
// Usage example
callAI('Hello, please introduce yourself')
.then(result => console.log(result))
.catch(error => console.error('Error:', error));
```
**Streaming Call:**
```javascript
async function streamAI(message, onChunk) {
const response = await fetch('https://your-worker.workers.dev/chat', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_PROXY_KEY',
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
},
body: JSON.stringify({
model: 'deepseek-chat',
messages: [{ role: 'user', content: message }],
stream: true
})
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
try {
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value);
const lines = chunk.split('\n');
for (const line of lines) {
if (line.startsWith('data: ')) {
const data = line.slice(6);
if (data === '[DONE]') return;
try {
const parsed = JSON.parse(data);
const content = parsed.choices[0]?.delta?.content;
if (content) {
onChunk(content);
}
} catch (e) {
// Ignore parsing errors
}
}
}
}
} finally {
reader.releaseLock();
}
}
// Usage example
streamAI('Write a story about AI', (chunk) => {
process.stdout.write(chunk); // Real-time output
});
```
### Python Examples
**Basic Call:**
```python
import requests
import json
def call_ai(message, model="deepseek-chat"):
url = "https://your-worker.workers.dev/chat"
headers = {
"Authorization": "Bearer YOUR_PROXY_KEY",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{"role": "user", "content": message}
],
"max_tokens": 1000
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
return data["choices"][0]["message"]["content"]
# Usage example
result = call_ai("Please explain what machine learning is")
print(result)
```
**Streaming Call:**
```python
import requests
import json
def stream_ai(message, model="deepseek-chat"):
url = "https://your-worker.workers.dev/chat"
headers = {
"Authorization": "Bearer YOUR_PROXY_KEY",
"Content-Type": "application/json",
"Accept": "text/event-stream"
}
payload = {
"model": model,
"messages": [{"role": "user", "content": message}],
"stream": True
}
response = requests.post(url, headers=headers, json=payload, stream=True)
response.raise_for_status()
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
parsed = json.loads(data)
content = parsed["choices"][0]["delta"].get("content")
if content:
print(content, end='', flush=True)
except json.JSONDecodeError:
continue
# Usage example
stream_ai("Write a poem about spring")
```
### iOS Swift Examples
```swift
import Foundation
class AIProxyClient {
private let baseURL = "https://your-worker.workers.dev"
private let apiKey = "YOUR_PROXY_KEY"
func chatCompletion(
model: String = "deepseek-chat",
messages: [[String: String]],
maxTokens: Int = 1000
) async throws -> String {
guard let url = URL(string: "\(baseURL)/chat") else {
throw APIError.invalidURL
}
var request = URLRequest(url: url)
request.httpMethod = "POST"
request.setValue("Bearer \(apiKey)", forHTTPHeaderField: "Authorization")
request.setValue("application/json", forHTTPHeaderField: "Content-Type")
let requestBody: [String: Any] = [
"model": model,
"messages": messages,
"max_tokens": maxTokens
]
request.httpBody = try JSONSerialization.data(withJSONObject: requestBody)
let (data, response) = try await URLSession.shared.data(for: request)
guard let httpResponse = response as? HTTPURLResponse,
httpResponse.statusCode == 200 else {
throw APIError.requestFailed
}
let result = try JSONSerialization.jsonObject(with: data) as! [String: Any]
let choices = result["choices"] as! [[String: Any]]
let message = choices[0]["message"] as! [String: Any]
return message["content"] as! String
}
}
enum APIError: Error {
case invalidURL
case requestFailed
}
// Usage example
let client = AIProxyClient()
Task {
do {
let response = try await client.chatCompletion(
messages: [
["role": "user", "content": "Hello, please introduce yourself"]
]
)
print(response)
} catch {
print("Error: \(error)")
}
}
```
## ❌ Error Handling
### Error Response Format
All errors return a unified JSON format:
```json
{
"error": "error_type",
"details": "Detailed error message",
"timestamp": "2025-01-01T12:00:00.000Z"
}
```
### Common Error Codes
| HTTP Status | Error Type | Description |
|-------------|------------|-------------|
| 400 | `invalid_request` | Request format error |
| 401 | `unauthorized` | Authentication failed |
| 404 | `not_found` | Endpoint not found |
| 413 | `payload_too_large` | Request body too large |
| 500 | `internal_error` | Internal server error |
| 502 | `upstream_error` | Upstream API error |
| 504 | `timeout` | Request timeout |
### Error Handling Example
```javascript
async function handleAPICall(message) {
try {
const response = await fetch('https://your-worker.workers.dev/chat', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_PROXY_KEY',
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: 'deepseek-chat',
messages: [{ role: 'user', content: message }]
})
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(`API Error (${response.status}): ${errorData.error} - ${errorData.details}`);
}
return await response.json();
} catch (error) {
console.error('API call failed:', error.message);
// Handle different error types
if (error.message.includes('401')) {
console.log('Please check if API key is correct');
} else if (error.message.includes('504')) {
console.log('Request timeout, please try again later');
} else if (error.message.includes('413')) {
console.log('Request content too long, please reduce input');
}
throw error;
}
}
```
## 🔒 Security Best Practices
### 1. API Key Management
- Never hardcode `PROXY_KEY` in client code
- Use environment variables or secure configuration management
- Rotate keys regularly
### 2. Request Validation
- Validate user input to prevent injection attacks
- Limit request frequency to prevent abuse
- Log and monitor abnormal requests
### 3. Content Filtering
```javascript
function sanitizeInput(content) {
// Remove potentially malicious content
return content
.replace(/<script[^>]*>.*?<\/script>/gi, '')
.replace(/<[^>]*>/g, '')
.trim();
}
const sanitizedMessage = sanitizeInput(userInput);
```
## 📊 Usage Limits
### Cloudflare Workers Limits
- **Request Timeout**: 30 seconds (configurable)
- **Request Body Size**: 1MB (configurable)
- **Concurrent Requests**: 1000/minute (free tier)
- **CPU Time**: 10ms (free tier)
### DeepSeek API Limits
- **Rate Limits**: Based on your DeepSeek account plan
- **Context Length**: 64K tokens
- **Concurrent Connections**: Based on account type
## 🚀 Performance Optimization Tips
### 1. Caching Strategy
```javascript
// Simple memory cache example
const cache = new Map();
function getCachedResponse(key) {
const cached = cache.get(key);
if (cached && Date.now() - cached.timestamp < 300000) { // 5-minute cache
return cached.data;
}
return null;
}
```
### 2. Request Optimization
- Set reasonable `max_tokens` to avoid unnecessarily long responses
- Use appropriate `temperature` values
- Use faster models for simple tasks
### 3. Streaming Response
- Use streaming response for long text generation to improve user experience
- Implement appropriate error retry mechanisms
- Consider implementing request cancellation
---
**Need More Help?** 👉 [View Usage Examples](./Examples.en) | [Troubleshooting](./Troubleshooting.en)