Files
ML-for-SQL-Injection/ML_for_SQL/testsql.py
2018-04-17 14:49:12 +08:00

59 lines
2.1 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Oct 30 20:00:50 2017
@author: wf
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from featurepossess import generate
from sklearn.externals import joblib
def test_c(flag,sql_flag):
sql_dir = "./data/sql_test.csv"
nor_dir = "./data/normal_test.csv"
allm_dir = "./data/alltest_matrix.csv"
if flag=='1' and sql_flag=='0':
nor_matrix = generate(nor_dir, "./data/nor_matrix.csv", 0)
return nor_matrix
elif flag=='1' and sql_flag=='1':
sql_matrix = generate(sql_dir, "./data/sqltest_matrix.csv", 1)
return sql_matrix
else:
sql_matrix=generate(sql_dir,"./data/sqltest_matrix.csv",1)
nor_matrix=generate(nor_dir,"./data/nortest_matrix.csv",0)
df = pd.read_csv(sql_matrix)
df.to_csv(allm_dir,encoding="utf_8_sig",index=False)
df = pd.read_csv( nor_matrix)
df.to_csv(allm_dir,encoding="utf_8_sig",index=False, header=False, mode='a+')
return allm_dir
def test_data(allm_dir):
feature_max = pd.read_csv(allm_dir)
arr=feature_max.values
test_data = np.delete(arr, -1, axis=1) #删除最后一列
#print(arr)
test_target=arr[:,7]
return test_data,test_target
if __name__=="__main__":
while(1):
model_name=input("请输入要选择的模型名称:")
clf = joblib.load('./file/'+model_name)
print(model_name," has been loaded")
flag=input("请输入测试文件个数:")
sql_flag=input("请输入样本类型:")
mode=test_c(flag,sql_flag)
test_data,test_target=test_data(mode)
y_pred=clf.predict(test_data)#预测
print("y_pred:%s"%y_pred)
print("test_target:%s"%test_target)
#Verify
print('Precision:%.3f' %metrics.precision_score(y_true=test_target,y_pred=y_pred))#查全率
print('Recall:%.3f' %metrics.recall_score(y_true=test_target,y_pred=y_pred))#查准率
print(metrics.confusion_matrix(y_true=test_target,y_pred=y_pred))#混淆矩阵