# -*- coding: utf-8 -*- """ Created on Mon Oct 30 20:00:50 2017 @author: wf """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import metrics from sklearn.svm import SVC from sklearn.model_selection import train_test_split from featurepossess import generate from sklearn.externals import joblib sql_matrix=generate("./data/sqlnew.csv","./data/sql_matrix.csv",1) nor_matrix=generate("./data/normal_less.csv","./data/nor_matrix.csv",0) df = pd.read_csv(sql_matrix) df.to_csv("./data/all_matrix.csv",encoding="utf_8_sig",index=False) df = pd.read_csv( nor_matrix) df.to_csv("./data/all_matrix.csv",encoding="utf_8_sig",index=False, header=False, mode='a+') # with open('sql_matrix', 'ab') as f: # f.write(open('nor_matrix', 'rb').read()) feature_max = pd.read_csv('./data/all_matrix.csv') arr=feature_max.values data = np.delete(arr, -1, axis=1) #删除最后一列 #print(arr) target=arr[:,7] #随机划分训练集和测试集 train_data,test_data,train_target,test_target = train_test_split(data,target,test_size=0.3,random_state=8) clf = SVC(kernel='rbf')#创建分类器对象,采用概率估计,默认为False clf.fit(train_data, train_target)#用训练数据拟合分类器模型 joblib.dump(clf, './file/svm.model') print("svm.model has been saved to 'file/svm.model'") #clf = joblib.load('svm.model') y_pred=clf.predict(test_data)#预测 print("y_pred:%s"%y_pred) print("test_target:%s"%test_target) #Verify print('Precision:%.3f' %metrics.precision_score(y_true=test_target,y_pred=y_pred))#查全率 print('Recall:%.3f' %metrics.recall_score(y_true=test_target,y_pred=y_pred))#查准率 print(metrics.confusion_matrix(y_true=test_target,y_pred=y_pred))#混淆矩阵 #print('F1:%.3f' %metrics.f1_score(y_true=test_target,y_pred=y_pred))#F1度量 #fpr,tpr,thresholds=metrics.roc_curve(y_true=test_target,y_score=y_pred) #print(fpr,tpr,thresholds) #print('auc:%.3f' %metrics.auc(fpr,tpr)) #print('auc:%.3f' %metrics.roc_auc_score(y_true=test_target,y_score=y_pred)) #plt.figure(1) #plt.axis([0,1,0,1])#设置横轴纵轴最大坐标 #plt.plot([0,1],[0,1],'k--')#绘制对角线曲线 #plt.plot(fpr,tpr,label='ROCcurve')#有问题,只有3个点 #plt.xlabel('False positive rate')#x轴标签 #plt.ylabel('True positive rate')#y轴标签 #plt.title('ROC curve') #plt.legend(loc='best')#生成图例 #plt.show()#显示图形