Site updated: 2020-01-28 16:35:08

This commit is contained in:
Jimmy Xiang
2020-01-28 16:35:09 +08:00
parent ffb5266311
commit 6f1b214ed5
25 changed files with 1609 additions and 13 deletions

View File

@@ -0,0 +1,176 @@
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<head><meta name="generator" content="Hexo 3.9.0">
<!-- Title -->
<meta charset="utf-8">
<meta name="applicable-device" content="pc,mobile">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=3.0, viewport-fit=cover">
<meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1">
<meta name="author" content="flypython">
<meta name="designer" content="flypython">
<meta name="keywords" content="cs224n 解答拾遗word embedding 之SVD分解,FlyPython - 专业的Python学习社区,flypython, 飞蟒飞蟒PythonPython入门Python自动化Python日报">
<meta property="og:title" content="cs224n 解答拾遗word embedding 之SVD分解 | FlyPython - 专业的Python学习社区">
<meta property="og:site_name" content="http://www.flypython.com">
<meta property="og:type" content="article">
<meta property="og:url" content="http://www.flypython.com/article/python-cs224n-02/">
<meta property="og:image" content="http://www.flypython.com/images/cs224n-02.png">
<meta property="og:description" content="cs224n 解答拾遗word embedding 之SVD分解--cs224n解答">
<meta name="description" content="cs224n 解答拾遗word embedding 之SVD分解--cs224n解答">
<meta name="rating" content="general">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<meta name="format-detection" content="telephone=yes">
<meta name="mobile-web-app-capable" content="yes">
<meta name="robots" content="index, follow">
<link rel="icon" href="/images/favicon.ico">
<title>cs224n 解答拾遗word embedding 之SVD分解 | FlyPython - 专业的Python学习社区</title>
<link rel="stylesheet" href="/css/f25.css">
<link rel="stylesheet" href="/css/highlight.css">
<link rel="stylesheet" href="/css/gitalk.css">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-147288599-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-147288599-1');
</script>
</head>
</head>
<body>
<header class="wrapper header-wrapper">
<div class="container header-nav-wrapper">
<div class="logo"><a href="/" title="FlyPython - 专业的Python学习社区"><h1 class="title">FlyPython</h1></a></div>
<nav class="nav-wrapper">
<a href="https://flypython.com/python" title="飞蟒微课堂">飞蟒微课堂</a>
<a href="https://flypython.com/flypython_daily" title="Python日报">Python日报</a>
<a href="https://flypython.com/PyCon/" title="PyCon">PyCon</a>
<a href="https://github.com/flypythoncom" title="Github">Github</a>
<a href="/article/about" title="关于">关于</a>
</nav>
<span class="btn-menu" id="J_header_menu">
<div class="inner">
<span class="line line-01"></span>
<span class="line line-02"></span>
<span class="line line-03"></span>
</div>
</span>
<div class="wrapper mb-nav-wrapper" id="J_header_menu_list">
<nav class="wrapper mb-nav-container">
<a href="https://flypython.com/python" title="飞蟒微课堂">飞蟒微课堂</a>
<a href="https://flypython.com/flypython_daily" title="Python日报">Python日报</a>
<a href="https://flypython.com/PyCon/" title="PyCon">PyCon</a>
<a href="https://github.com/flypythoncom" title="Github">Github</a>
<a href="/article/about" title="关于">关于</a>
</nav>
</div>
</div>
</header>
<section class="body-wrapper">
<section class="wrapper post-banner">
<div class="container post-banner-container">
<h2 class="wrapper title">cs224n 解答拾遗word embedding 之SVD分解</h2>
<div class="wrapper tips">
<span>Author</span><span>flypython</span> | <span>Date: </span><span>2020-01-02</span> | <span>Category</span><span><a href="/fly/自然语言处理/" title="自然语言处理">自然语言处理</a><a href="/fly/自然语言处理/cs224n/" title="cs224n">cs224n</a></span>
</div>
</div>
</section>
<section class="wrapper main-wrapper">
<article class="sub-container post-content">
<blockquote>
<p>老师请问共现矩阵奇异值分解后为什么是用U的行来做word embedding呢?</p>
</blockquote>
<p>cs224n课程第一周里提到了2种生成word embedding的方法。<br>一种是基于word2vec的神经网络生成词向量的方法。<br>另一种是基于统计的词向量生成的方法使用共现矩阵再进行SVD分解。</p>
<p><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/count_based.png" alt></p>
<p>首先要说明这2种方法输出的word embedding 都是distributed representation(稠密表达)。</p>
<p>其次值得说的是这2种方法各有优缺点可能面试里会问在glove方法中综合进行了两种算法达到最优的效果。</p>
<p>那么我们这里详细探讨一下利用SVD生成词向量的过程解答上面提到的问题。</p>
<blockquote>
<p>共现矩阵奇异值分解后为什么是用U的行来做word embedding</p>
</blockquote>
<h3 id="1-生成共现矩阵Window-based-Co-occurrence-Matrix"><a href="#1-生成共现矩阵Window-based-Co-occurrence-Matrix" class="headerlink" title="1.生成共现矩阵Window based Co-occurrence Matrix"></a>1.生成共现矩阵Window based Co-occurrence Matrix</h3><p>构造一个矩阵X这个矩阵的大小是 $V*V$ 这里V是词表的长度。这个矩阵称之为共现矩阵。</p>
<p>我们要统计每个中心词在左右k个窗口的范围内上下文词出现的词频。于是这里的共现矩阵第一个维度代表这个中心词第二个维度代表这个中心词对应的上下文词。<br>$X={x_{ij}}$为第i个词作为中心词时对应第j个词作为其上下文词时候的词频。</p>
<p>我们还是用课上的例子有3句话</p>
<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line">I enjoy flying。</span><br><span class="line">I like NLP。</span><br><span class="line">I like deep learning。</span><br></pre></td></tr></table></figure>
<p>假设这里k=1统计的共现矩阵X为<br><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/Window_based_Co-occurrence_Matrix1.png" alt></p>
<p>可以看出这里的共现矩阵X为对称矩阵也就是对中心词likeenjoy的出现次数是等于对于中心词enjoylike的出现次数。</p>
<h3 id="2-SVD分解的过程"><a href="#2-SVD分解的过程" class="headerlink" title="2.SVD分解的过程"></a>2.SVD分解的过程</h3><p>假设X的size是$V<em>V$,那么U的矩阵是$V</em>K$,奇异值矩阵S是$K<em>K$,而$V^T$的矩阵size 是$K</em>V$.<br>这里V是词表长度上面解释了K是指最后需要输出的词向量维度一般我们取100-300之间的一个值。</p>
<p>SVD分解公式可以写作<br>$X=USV^T$<br>写成分量式为:</p>
<p>$x_{ij}= \sum_{k=1}^n u_{ij}s_kv_{jk}$</p>
<p>那么从这个公式看出对于每个样本word $x_{ij}$ 与$u_{ij}$是对于的,而不是与$v^T_j$对应,$v^T_j$与每个维度对应。<br><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/svd1.png" alt></p>
<h4 id="这里需要解释一下我们是如何得到SVD分解公式的"><a href="#这里需要解释一下我们是如何得到SVD分解公式的" class="headerlink" title="这里需要解释一下我们是如何得到SVD分解公式的"></a>这里需要解释一下我们是如何得到SVD分解公式的</h4><p>由线性代数基本知识可知对于任意矩阵Xsize $V*V$ )来说,我们可以进行奇异值分解,</p>
<p>$X=U \Lambda V^T$</p>
<p>这里, $U, V, \Lambda$都是size $V*V$ 的对角矩阵,并且每个值都是非负实数,按大小从大到小排列。</p>
<p><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/svd2.png" alt></p>
<p>那么我们对$\Lambda$进行降维只保留前K个值这样U和V也会跟着变从维度上看矩阵U去掉了后面的一些列变成了$V<em>K$;矩阵$V^T$,去掉了前面的一些行,变成了$K</em>V$(实质上做了空间变换,而不是简单的去除一些数据)。也就是上面的图:<br><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/svd1.png" alt></p>
<p>这里就解释了为什么是用U的行来做word embedding。</p>
<h3 id="3-如果U对应的词向量那么V对应的是什么呢"><a href="#3-如果U对应的词向量那么V对应的是什么呢" class="headerlink" title="3.如果U对应的词向量那么V对应的是什么呢"></a>3.如果U对应的词向量那么V对应的是什么呢</h3><p>还有一个问题如果U对应的词向量那么V对应的是什么呢对于词共现矩阵来说V的意义还不是很清晰我们考虑这样一个矩阵</p>
<p>词-文档矩阵 Word-Document Matrix行是所有的词维度为V列是每个文档维度为M。</p>
<p>对这样一个矩阵进行SVD分解并降维到K个奇异值上取值</p>
<p><img src="https://raw.githubusercontent.com/jcjview/jcjview.github.io/master/img/lsa1.png" alt></p>
<p>SVD分解公式可以写作<br>$X=U\Sigma V^T$</p>
<p>U的矩阵size$V*K$,</p>
<p>$V^T$的矩阵size 是$K*V$</p>
<p>写成分量式为:</p>
<p>$x_{ij}= \sum_{k=1}^n u_{ij}\sigma_kv_{jk}$</p>
<p>$u_{ij}$ 对应的第i个词和第j个主题的相关度$u_{i}是词的主题向量$。</p>
<p>$v_{jk}$ 对应第j个文档和第k个主题的相关度<strong>所以$v_j$是第j个文档的文档向量。</strong></p>
<p>这样就说明了V在SVD分解的意义。</p>
</article>
<div class="sub-container gitalk-wrapper" id="gitalk-container"></div>
</section>
<div class="tips-top-wrapper">
<span class="tip-top-container" onclick="scrollToWindowTop()">
<span class="l-bar"></span>
<span class="r-bar"></span>
</span>
</div>
<footer class="wrapper footer-wrapper">
<div class="container"><span class="copyright">&copy; 2020 FlyPython . All Rights Reserved.</span></div>
</footer>
</section>
<script src="/js/f25.js"></script>
<script src="/js/gitalk.min.js"></script>
<script>
var gitalkAdmin = 'xxg1413'.split(',');
var gitalk = new Gitalk({
clientID: 'd0e566bfc45c0b852c6c',
clientSecret: '6b69b3a841c85a6223e5a904c47f5e2d84322980',
repo: 'gitalk',
owner: 'flypythoncom',
admin: gitalkAdmin,
id: location.pathname.length > 50 ? location.pathname.substr(0,50) : location.pathname, // Ensure uniqueness and length less than 50
distractionFreeMode: false // Facebook-like distraction free mode
});
gitalk.render('gitalk-container');
</script>
</body>
</html>