Files
cs224n_2019/[finished]Assignment_4_neural_machine_translation_s2s_attention/utils.py
2019-11-29 09:46:32 +08:00

84 lines
2.5 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2018-19: Homework 4
nmt.py: NMT Model
Pencheng Yin <pcyin@cs.cmu.edu>
Sahil Chopra <schopra8@stanford.edu>
"""
import math
from typing import List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def pad_sents(sents, pad_token):
""" Pad list of sentences according to the longest sentence in the batch.
@param sents (list[list[str]]): list of sentences, where each sentence
is represented as a list of words
@param pad_token (str): padding token
@returns sents_padded (list[list[str]]): list of sentences where sentences shorter
than the max length sentence are padded out with the pad_token, such that
each sentences in the batch now has equal length.
"""
sents_padded = []
### YOUR CODE HERE (~6 Lines)
lengths = [ len(sent) for sent in sents]
max_length = max(lengths)
for i in range(len(lengths)):
num_append = max_length - lengths[i]
for j in range(num_append):
sents[i].append(pad_token)
sents_padded = sents
### END YOUR CODE
return sents_padded
def read_corpus(file_path, source):
""" Read file, where each sentence is dilineated by a `\n`.
@param file_path (str): path to file containing corpus
@param source (str): "tgt" or "src" indicating whether text
is of the source language or target language
"""
data = []
for line in open(file_path):
sent = line.strip().split(' ')
# only append <s> and </s> to the target sentence
if source == 'tgt':
sent = ['<s>'] + sent + ['</s>']
data.append(sent)
return data
def batch_iter(data, batch_size, shuffle=False):
""" Yield batches of source and target sentences reverse sorted by length (largest to smallest).
@param data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence
@param batch_size (int): batch size
@param shuffle (boolean): whether to randomly shuffle the dataset
"""
batch_num = math.ceil(len(data) / batch_size)
index_array = list(range(len(data)))
if shuffle:
np.random.shuffle(index_array)
for i in range(batch_num):
indices = index_array[i * batch_size: (i + 1) * batch_size]
examples = [data[idx] for idx in indices]
examples = sorted(examples, key=lambda e: len(e[0]), reverse=True)
src_sents = [e[0] for e in examples]
tgt_sents = [e[1] for e in examples]
yield src_sents, tgt_sents