Files
cs224n_2019/pytorch-bert-code/run.py
2019-12-13 14:52:07 +08:00

37 lines
1.1 KiB
Python

# coding: UTF-8
import time
import torch
import numpy as np
from train_eval import train
import argparse
from utils import build_dataset, build_iterator, get_time_dif
import bert
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--model', type=str, required=False, help='choose a model: Bert, ERNIE')
args = parser.parse_args()
if __name__ == '__main__':
dataset = '.' # 数据集
model_name = 'bert'#args.model # bert
x = bert
config = x.Config(dataset)
np.random.seed(1)
torch.manual_seed(1)
# torch.cuda.manual_seed_all(1)
# torch.backends.cudnn.deterministic = True # 保证每次结果一样
start_time = time.time()
print("Loading data...")
train_data, dev_data, test_data = build_dataset(config)
train_iter = build_iterator(train_data, config)
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# train
model = x.Model(config).to(config.device)
train(config, model, train_iter, dev_iter, test_iter)