Files
cs224n_2019/Assignment_origin/Assignment 5/model_embeddings.py
2019-10-31 13:52:25 +08:00

65 lines
1.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2018-19: Homework 5
model_embeddings.py: Embeddings for the NMT model
Pencheng Yin <pcyin@cs.cmu.edu>
Sahil Chopra <schopra8@stanford.edu>
Anand Dhoot <anandd@stanford.edu>
Michael Hahn <mhahn2@stanford.edu>
"""
import torch.nn as nn
# Do not change these imports; your module names should be
# `CNN` in the file `cnn.py`
# `Highway` in the file `highway.py`
# Uncomment the following two imports once you're ready to run part 1(j)
from cnn import CNN
from highway import Highway
# End "do not change"
class ModelEmbeddings(nn.Module):
"""
Class that converts input words to their CNN-based embeddings.
"""
def __init__(self, embed_size, vocab):
"""
Init the Embedding layer for one language
@param embed_size (int): Embedding size (dimensionality) for the output
@param vocab (VocabEntry): VocabEntry object. See vocab.py for documentation.
"""
super(ModelEmbeddings, self).__init__()
## A4 code
# pad_token_idx = vocab.src['<pad>']
# self.embeddings = nn.Embedding(len(vocab.src), embed_size, padding_idx=pad_token_idx)
## End A4 code
### YOUR CODE HERE for part 1j
### END YOUR CODE
def forward(self, input):
"""
Looks up character-based CNN embeddings for the words in a batch of sentences.
@param input: Tensor of integers of shape (sentence_length, batch_size, max_word_length) where
each integer is an index into the character vocabulary
@param output: Tensor of shape (sentence_length, batch_size, embed_size), containing the
CNN-based embeddings for each word of the sentences in the batch
"""
## A4 code
# output = self.embeddings(input)
# return output
## End A4 code
### YOUR CODE HERE for part 1j
return x_word_embed
### END YOUR CODE