113 lines
3.3 KiB
Python
113 lines
3.3 KiB
Python
import re
|
||
import tqdm
|
||
import torch
|
||
import collections
|
||
import pickle
|
||
from torch import nn
|
||
|
||
from model import RNNModel,embed_size,hidden_dims,batch_size
|
||
|
||
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
||
|
||
epochs=100
|
||
lr=0.001
|
||
def get_data():
|
||
special_character_removal = re.compile(r'[^\w。, ]', re.IGNORECASE)
|
||
# 诗集
|
||
poetrys = []
|
||
peotry_path='data/poetry.txt'
|
||
with open(peotry_path,'r',encoding='utf-8') as f:
|
||
for content in f:
|
||
content=content.strip()
|
||
content = '[' + content + ']'
|
||
poetrys.append(content)
|
||
|
||
# poetrys = sorted(poetrys, key=lambda line: len(line))
|
||
# 统计每个字出现次数
|
||
all_words = []
|
||
for poetry in poetrys:
|
||
all_words += [word for word in poetry]
|
||
counter = collections.Counter(all_words)
|
||
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
|
||
words, _ = zip(*count_pairs)
|
||
# 取前多少个常用字
|
||
words = words[:len(words)] + (' ',)
|
||
# 每个字映射为一个数字ID
|
||
word2ix = dict(zip(words, range(len(words))))
|
||
ix2word = {v: k for k, v in word2ix.items()}
|
||
data = [[word2ix[c] for c in poetry ] for poetry in poetrys]
|
||
# data=numpy.array(data)
|
||
return data,word2ix,ix2word
|
||
|
||
def test(model):
|
||
start_idx=[word2ix['[']]
|
||
end_word=''
|
||
lens=0
|
||
hidden = None
|
||
ret=''
|
||
while end_word!=']' and len(ret)<100:
|
||
data_ = torch.tensor([start_idx],device=device).long()
|
||
# print("data size",data_.size())
|
||
output, hidden = model(data_, hidden)
|
||
# print("output size", output.size())
|
||
ouput_idx=output.view(-1).argmax().cpu()
|
||
# print('ouput_idx',ouput_idx)
|
||
# print('ouput_idx', ouput_idx.item())
|
||
ouput_idx=ouput_idx.item()
|
||
start_idx=[ouput_idx]
|
||
end_word=ix2word[ouput_idx]
|
||
ret+=end_word
|
||
return ret
|
||
|
||
|
||
|
||
|
||
def train():
|
||
|
||
# 模型定义
|
||
model = RNNModel(len(word2ix), embed_size, hidden_dims)
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
||
criterion = nn.CrossEntropyLoss()
|
||
model.to(device)
|
||
model.train()
|
||
for epoch in (range(epochs)):
|
||
total_loss=0
|
||
count=0
|
||
for ii, data_ in tqdm.tqdm(enumerate(data)):
|
||
data_=torch.tensor(data_).long()
|
||
x = data_.unsqueeze(1).to(device)
|
||
optimizer.zero_grad()
|
||
y = torch.zeros(x.shape).to(device).long()
|
||
y[:-1], y[-1] = x[1:], x[0]
|
||
output, _ = model(x)
|
||
loss = criterion(output, y.view(-1))
|
||
"""
|
||
hidden=None
|
||
for k in range(2,max_lenth):
|
||
data1=data_[:k]
|
||
input_, target = data1[:-1, :], data1[1:, :]
|
||
output, hidden = model(input_,hidden)
|
||
loss = criterion(output, target.view(-1))
|
||
optimizer.step()
|
||
"""
|
||
loss.backward()
|
||
optimizer.step()
|
||
total_loss+=(loss.item())
|
||
count+=1
|
||
print(epoch,'loss=',total_loss/count)
|
||
torch.save(model.state_dict(), 'model.bin' )
|
||
chars=test(model)
|
||
print(chars)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 获取数据
|
||
data, word2ix, ix2word = get_data()
|
||
with open("word2ix.pkl", 'wb') as outfile:
|
||
pickle.dump(word2ix,outfile)
|
||
with open("ix2word.pkl", 'wb') as outfile:
|
||
pickle.dump(ix2word,outfile)
|
||
|
||
data=data[:100]
|
||
train() |