#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2018-19: Homework 5 """ ### YOUR CODE HERE for part 1h import torch import numpy as np class Highway(torch.nn.Module): def __init__(self, D_in, H, D_out,prob): """ Apply the output of the convolution later (x_conv) through a highway network @param D_in (int): Size of input layer @param H (int): Size of Hidden layer @param D_out (int): Size of output layer @param prob (float): Probability of dropout """ super(Highway, self).__init__() def forward(self, x): """ Apply the output of the convolution later (x_conv) through a highway network @param x (Tensor): Input x_cov gets applied to Highway network - shape of input tensor [batch_size,1,e_word] @returns x_pred (Tensor): Size of Hidden layer -- NOTE: check the shapes """ pass ### END YOUR CODE