# coding: UTF-8 import torch import torch.nn as nn # from pytorch_pretrained_bert import BertModel, BertTokenizer from transformers import BertModel, BertTokenizer,BertConfig import os class Config(object): """配置参数""" def __init__(self, dataset): self.model_name = 'bert' self.train_path = dataset + '/data/train.txt' # 训练集 self.dev_path = dataset + '/data/dev.txt' # 验证集 self.test_path = dataset + '/data/test.txt' # 测试集 self.class_list = [x.strip() for x in open( dataset + '/data/class.txt').readlines()] # 类别名单 self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备 self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练 self.num_classes = len(self.class_list) # 类别数 self.num_epochs = 3 # epoch数 self.batch_size = 128 # mini-batch大小 self.pad_size = 32 # 每句话处理成的长度(短填长切) self.learning_rate = 5e-5 # 学习率 self.bert_path = './bert' self.tokenizer = BertTokenizer.from_pretrained(self.bert_path) self.hidden_size = 768 class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() bert_config_file = os.path.join(config.bert_path, f'bert_config.json') bert_config = BertConfig.from_json_file(bert_config_file) self.bert = BertModel.from_pretrained(config.bert_path,config=bert_config) for param in self.bert.parameters(): param.requires_grad = True self.fc = nn.Linear(config.hidden_size, config.num_classes) def forward(self, x): context = x[0] # 输入的句子 mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0] _, pooled = self.bert(context, attention_mask=mask) out = self.fc(pooled) return out