# coding: UTF-8 import torch from tqdm import tqdm import time from datetime import timedelta PAD, CLS = '[PAD]', '[CLS]' # padding符号, bert中综合信息符号 def build_dataset(config): def load_dataset(path, pad_size=32): contents = [] with open(path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content, label = lin.split('\t') token = config.tokenizer.tokenize(content) token = [CLS] + token seq_len = len(token) mask = [] token_ids = config.tokenizer.convert_tokens_to_ids(token) if pad_size: if len(token) < pad_size: mask = [1] * len(token_ids) + [0] * (pad_size - len(token)) token_ids += ([0] * (pad_size - len(token))) else: mask = [1] * pad_size token_ids = token_ids[:pad_size] seq_len = pad_size contents.append((token_ids, int(label), seq_len, mask)) return contents train = load_dataset(config.train_path, config.pad_size) dev = load_dataset(config.dev_path, config.pad_size) test = load_dataset(config.test_path, config.pad_size) return train, dev, test class DatasetIterater(object): def __init__(self, batches, batch_size, device): self.batch_size = batch_size self.batches = batches self.n_batches = len(batches) // batch_size self.residue = False # 记录batch数量是否为整数 if len(batches) % self.n_batches != 0: self.residue = True self.index = 0 self.device = device def _to_tensor(self, datas): x = torch.LongTensor([_[0] for _ in datas]).to(self.device) y = torch.LongTensor([_[1] for _ in datas]).to(self.device) # pad前的长度(超过pad_size的设为pad_size) seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device) mask = torch.LongTensor([_[3] for _ in datas]).to(self.device) return (x, seq_len, mask), y def __next__(self): if self.residue and self.index == self.n_batches: batches = self.batches[self.index * self.batch_size: len(self.batches)] self.index += 1 batches = self._to_tensor(batches) return batches elif self.index > self.n_batches: self.index = 0 raise StopIteration else: batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size] self.index += 1 batches = self._to_tensor(batches) return batches def __iter__(self): return self def __len__(self): if self.residue: return self.n_batches + 1 else: return self.n_batches def build_iterator(dataset, config): iter = DatasetIterater(dataset, config.batch_size, config.device) return iter def get_time_dif(start_time): """获取已使用时间""" end_time = time.time() time_dif = end_time - start_time return timedelta(seconds=int(round(time_dif)))