#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2018-19: Homework 4 run.py: Run Script for Simple NMT Model Pencheng Yin Sahil Chopra Usage: run.py train --train-src= --train-tgt= --dev-src= --dev-tgt= --vocab= [options] run.py decode [options] MODEL_PATH TEST_SOURCE_FILE OUTPUT_FILE run.py decode [options] MODEL_PATH TEST_SOURCE_FILE TEST_TARGET_FILE OUTPUT_FILE Options: -h --help show this screen. --cuda use GPU --train-src= train source file --train-tgt= train target file --dev-src= dev source file --dev-tgt= dev target file --vocab= vocab file --seed= seed [default: 0] --batch-size= batch size [default: 32] --embed-size= embedding size [default: 256] --hidden-size= hidden size [default: 256] --clip-grad= gradient clipping [default: 5.0] --log-every= log every [default: 10] --max-epoch= max epoch [default: 30] --input-feed use input feeding --patience= wait for how many iterations to decay learning rate [default: 5] --max-num-trial= terminate training after how many trials [default: 5] --lr-decay= learning rate decay [default: 0.5] --beam-size= beam size [default: 5] --sample-size= sample size [default: 5] --lr= learning rate [default: 0.001] --uniform-init= uniformly initialize all parameters [default: 0.1] --save-to= model save path [default: model.bin] --valid-niter= perform validation after how many iterations [default: 2000] --dropout= dropout [default: 0.3] --max-decoding-time-step= maximum number of decoding time steps [default: 70] """ import math import sys import pickle import time from docopt import docopt from nltk.translate.bleu_score import corpus_bleu, sentence_bleu, SmoothingFunction from nmt_model import Hypothesis, NMT import numpy as np from typing import List, Tuple, Dict, Set, Union from tqdm import tqdm from utils import read_corpus, batch_iter from vocab import Vocab, VocabEntry import torch import torch.nn.utils def evaluate_ppl(model, dev_data, batch_size=32): """ Evaluate perplexity on dev sentences @param model (NMT): NMT Model @param dev_data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence @param batch_size (batch size) @returns ppl (perplixty on dev sentences) """ was_training = model.training model.eval() cum_loss = 0. cum_tgt_words = 0. # no_grad() signals backend to throw away all gradients with torch.no_grad(): for src_sents, tgt_sents in batch_iter(dev_data, batch_size): loss = -model(src_sents, tgt_sents).sum() cum_loss += loss.item() tgt_word_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `` cum_tgt_words += tgt_word_num_to_predict ppl = np.exp(cum_loss / cum_tgt_words) if was_training: model.train() return ppl def compute_corpus_level_bleu_score(references: List[List[str]], hypotheses: List[Hypothesis]) -> float: """ Given decoding results and reference sentences, compute corpus-level BLEU score. @param references (List[List[str]]): a list of gold-standard reference target sentences @param hypotheses (List[Hypothesis]): a list of hypotheses, one for each reference @returns bleu_score: corpus-level BLEU score """ if references[0][0] == '': references = [ref[1:-1] for ref in references] bleu_score = corpus_bleu([[ref] for ref in references], [hyp.value for hyp in hypotheses]) return bleu_score def train(args: Dict): """ Train the NMT Model. @param args (Dict): args from cmd line """ train_data_src = read_corpus(args['--train-src'], source='src') train_data_tgt = read_corpus(args['--train-tgt'], source='tgt') dev_data_src = read_corpus(args['--dev-src'], source='src') dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt') train_data = list(zip(train_data_src, train_data_tgt)) dev_data = list(zip(dev_data_src, dev_data_tgt)) train_batch_size = int(args['--batch-size']) clip_grad = float(args['--clip-grad']) valid_niter = int(args['--valid-niter']) log_every = int(args['--log-every']) model_save_path = args['--save-to'] vocab = Vocab.load(args['--vocab']) model = NMT(embed_size=int(args['--embed-size']), hidden_size=int(args['--hidden-size']), dropout_rate=float(args['--dropout']), vocab=vocab) model.train() uniform_init = float(args['--uniform-init']) if np.abs(uniform_init) > 0.: print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr) for p in model.parameters(): p.data.uniform_(-uniform_init, uniform_init) vocab_mask = torch.ones(len(vocab.tgt)) vocab_mask[vocab.tgt['']] = 0 device = torch.device("cuda:0" if args['--cuda'] else "cpu") print('use device: %s' % device, file=sys.stderr) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr'])) num_trial = 0 train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0 cum_examples = report_examples = epoch = valid_num = 0 hist_valid_scores = [] train_time = begin_time = time.time() print('begin Maximum Likelihood training') while True: epoch += 1 for src_sents, tgt_sents in batch_iter(train_data, batch_size=train_batch_size, shuffle=True): train_iter += 1 optimizer.zero_grad() batch_size = len(src_sents) example_losses = -model(src_sents, tgt_sents) # (batch_size,) batch_loss = example_losses.sum() loss = batch_loss / batch_size loss.backward() # clip gradient grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) optimizer.step() batch_losses_val = batch_loss.item() report_loss += batch_losses_val cum_loss += batch_losses_val tgt_words_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `` report_tgt_words += tgt_words_num_to_predict cum_tgt_words += tgt_words_num_to_predict report_examples += batch_size cum_examples += batch_size if train_iter % log_every == 0: print('epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' \ 'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % (epoch, train_iter, report_loss / report_examples, math.exp(report_loss / report_tgt_words), cum_examples, report_tgt_words / (time.time() - train_time), time.time() - begin_time), file=sys.stderr) train_time = time.time() report_loss = report_tgt_words = report_examples = 0. # perform validation if train_iter % valid_niter == 0: print('epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter, cum_loss / cum_examples, np.exp(cum_loss / cum_tgt_words), cum_examples), file=sys.stderr) cum_loss = cum_examples = cum_tgt_words = 0. valid_num += 1 print('begin validation ...', file=sys.stderr) # compute dev. ppl and bleu dev_ppl = evaluate_ppl(model, dev_data, batch_size=128) # dev batch size can be a bit larger valid_metric = -dev_ppl print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr) is_better = len(hist_valid_scores) == 0 or valid_metric > max(hist_valid_scores) hist_valid_scores.append(valid_metric) if is_better: patience = 0 print('save currently the best model to [%s]' % model_save_path, file=sys.stderr) model.save(model_save_path) # also save the optimizers' state torch.save(optimizer.state_dict(), model_save_path + '.optim') elif patience < int(args['--patience']): patience += 1 print('hit patience %d' % patience, file=sys.stderr) if patience == int(args['--patience']): num_trial += 1 print('hit #%d trial' % num_trial, file=sys.stderr) if num_trial == int(args['--max-num-trial']): print('early stop!', file=sys.stderr) exit(0) # decay lr, and restore from previously best checkpoint lr = optimizer.param_groups[0]['lr'] * float(args['--lr-decay']) print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr) # load model params = torch.load(model_save_path, map_location=lambda storage, loc: storage) model.load_state_dict(params['state_dict']) model = model.to(device) print('restore parameters of the optimizers', file=sys.stderr) optimizer.load_state_dict(torch.load(model_save_path + '.optim')) # set new lr for param_group in optimizer.param_groups: param_group['lr'] = lr # reset patience patience = 0 if epoch == int(args['--max-epoch']): print('reached maximum number of epochs!', file=sys.stderr) exit(0) def decode(args: Dict[str, str]): """ Performs decoding on a test set, and save the best-scoring decoding results. If the target gold-standard sentences are given, the function also computes corpus-level BLEU score. @param args (Dict): args from cmd line """ print("load test source sentences from [{}]".format(args['TEST_SOURCE_FILE']), file=sys.stderr) test_data_src = read_corpus(args['TEST_SOURCE_FILE'], source='src') if args['TEST_TARGET_FILE']: print("load test target sentences from [{}]".format(args['TEST_TARGET_FILE']), file=sys.stderr) test_data_tgt = read_corpus(args['TEST_TARGET_FILE'], source='tgt') print("load model from {}".format(args['MODEL_PATH']), file=sys.stderr) model = NMT.load(args['MODEL_PATH']) if args['--cuda']: model = model.to(torch.device("cuda:0")) hypotheses = beam_search(model, test_data_src, beam_size=int(args['--beam-size']), max_decoding_time_step=int(args['--max-decoding-time-step'])) if args['TEST_TARGET_FILE']: top_hypotheses = [hyps[0] for hyps in hypotheses] bleu_score = compute_corpus_level_bleu_score(test_data_tgt, top_hypotheses) print('Corpus BLEU: {}'.format(bleu_score * 100), file=sys.stderr) with open(args['OUTPUT_FILE'], 'w') as f: for src_sent, hyps in zip(test_data_src, hypotheses): top_hyp = hyps[0] hyp_sent = ' '.join(top_hyp.value) f.write(hyp_sent + '\n') def beam_search(model: NMT, test_data_src: List[List[str]], beam_size: int, max_decoding_time_step: int) -> List[List[Hypothesis]]: """ Run beam search to construct hypotheses for a list of src-language sentences. @param model (NMT): NMT Model @param test_data_src (List[List[str]]): List of sentences (words) in source language, from test set. @param beam_size (int): beam_size (# of hypotheses to hold for a translation at every step) @param max_decoding_time_step (int): maximum sentence length that Beam search can produce @returns hypotheses (List[List[Hypothesis]]): List of Hypothesis translations for every source sentence. """ was_training = model.training model.eval() hypotheses = [] with torch.no_grad(): for src_sent in tqdm(test_data_src, desc='Decoding', file=sys.stdout): example_hyps = model.beam_search(src_sent, beam_size=beam_size, max_decoding_time_step=max_decoding_time_step) hypotheses.append(example_hyps) if was_training: model.train(was_training) return hypotheses def main(): """ Main func. """ args = docopt(__doc__) # Check pytorch version assert(torch.__version__ >= "1.0.0"), "Please update your installation of PyTorch. You have {} and you should have version 1.0.0".format(torch.__version__) # seed the random number generators seed = int(args['--seed']) torch.manual_seed(seed) if args['--cuda']: torch.cuda.manual_seed(seed) np.random.seed(seed * 13 // 7) if args['train']: train(args) elif args['decode']: decode(args) else: raise RuntimeError('invalid run mode') if __name__ == '__main__': main()