update to transformers 2.3.0
This commit is contained in:
@@ -1,8 +1,14 @@
|
|||||||
|
|
||||||
update to transformer 2.3.0
|
update to transformer 2.3.0
|
||||||
|
### 如何将bert model 的Tensorflow模型 转换为pytorch模型
|
||||||
|
|
||||||
转换工具已经失效
|
convert_bert_original_tf_checkpoint_to_pytorch.py
|
||||||
|
|
||||||
|
运行脚本run.sh
|
||||||
|
|
||||||
|
后生成对应pytorch_model.bin
|
||||||
|
|
||||||
|
---
|
||||||
chinese bert
|
chinese bert
|
||||||
|
|
||||||
https://github.com/ymcui/Chinese-BERT-wwm/blob/master/README_EN.md
|
https://github.com/ymcui/Chinese-BERT-wwm/blob/master/README_EN.md
|
||||||
|
|||||||
@@ -0,0 +1,61 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2018 The HuggingFace Inc. team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Convert BERT checkpoint."""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
|
||||||
|
# Initialise PyTorch model
|
||||||
|
config = BertConfig.from_json_file(bert_config_file)
|
||||||
|
print("Building PyTorch model from configuration: {}".format(str(config)))
|
||||||
|
model = BertForPreTraining(config)
|
||||||
|
|
||||||
|
# Load weights from tf checkpoint
|
||||||
|
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
|
||||||
|
|
||||||
|
# Save pytorch-model
|
||||||
|
print("Save PyTorch model to {}".format(pytorch_dump_path))
|
||||||
|
torch.save(model.state_dict(), pytorch_dump_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
# Required parameters
|
||||||
|
parser.add_argument(
|
||||||
|
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--bert_config_file",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="The config json file corresponding to the pre-trained BERT model. \n"
|
||||||
|
"This specifies the model architecture.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
||||||
@@ -1,3 +1 @@
|
|||||||
export BERT_BASE_DIR=./
|
python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path bert_model.ckpt --bert_config_file bert_config.json --pytorch_dump_path bert_model.bin
|
||||||
|
|
||||||
transformers bert $BERT_BASE_DIR/bert_model.ckpt $BERT_BASE_DIR/bert_config.json $BERT_BASE_DIR/pytorch_model.bin
|
|
||||||
|
|||||||
Reference in New Issue
Block a user