update to transformers 2.3.0
This commit is contained in:
@@ -1,8 +1,14 @@
|
||||
|
||||
update to transformer 2.3.0
|
||||
### 如何将bert model 的Tensorflow模型 转换为pytorch模型
|
||||
|
||||
转换工具已经失效
|
||||
convert_bert_original_tf_checkpoint_to_pytorch.py
|
||||
|
||||
运行脚本run.sh
|
||||
|
||||
后生成对应pytorch_model.bin
|
||||
|
||||
---
|
||||
chinese bert
|
||||
|
||||
https://github.com/ymcui/Chinese-BERT-wwm/blob/master/README_EN.md
|
||||
|
||||
@@ -0,0 +1,61 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Convert BERT checkpoint."""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
|
||||
# Initialise PyTorch model
|
||||
config = BertConfig.from_json_file(bert_config_file)
|
||||
print("Building PyTorch model from configuration: {}".format(str(config)))
|
||||
model = BertForPreTraining(config)
|
||||
|
||||
# Load weights from tf checkpoint
|
||||
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
|
||||
|
||||
# Save pytorch-model
|
||||
print("Save PyTorch model to {}".format(pytorch_dump_path))
|
||||
torch.save(model.state_dict(), pytorch_dump_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
# Required parameters
|
||||
parser.add_argument(
|
||||
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bert_config_file",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="The config json file corresponding to the pre-trained BERT model. \n"
|
||||
"This specifies the model architecture.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
||||
@@ -1,3 +1 @@
|
||||
export BERT_BASE_DIR=./
|
||||
|
||||
transformers bert $BERT_BASE_DIR/bert_model.ckpt $BERT_BASE_DIR/bert_config.json $BERT_BASE_DIR/pytorch_model.bin
|
||||
python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path bert_model.ckpt --bert_config_file bert_config.json --pytorch_dump_path bert_model.bin
|
||||
|
||||
Reference in New Issue
Block a user