modify a5 origin

This commit is contained in:
chongjiu.jin
2019-12-03 16:41:43 +08:00
parent 4f44285ab3
commit 2b6bdc4718
3 changed files with 93 additions and 73 deletions

90
rnn-poetry/run.py Normal file
View File

@@ -0,0 +1,90 @@
import re
import tqdm
import torch
import collections
import numpy
from torch import nn
from model import RNNModel
device=
batch_size=128
embed_size=256
epochs=100
lr=0.001
def get_data():
poetry_file = 'data/poetry.txt'
special_character_removal = re.compile(r'[^\w。 ]', re.IGNORECASE)
# 诗集
poetrys = []
with open(poetry_file, "r", encoding='utf-8', ) as f:
for line in f:
try:
title, content = line.strip().split(':')
content = special_character_removal.sub('', content)
content = content.replace(' ', '')
if len(content) < 5:
continue
if (len(content) > 12 * 6):
content_list = content.split("")
for i in range(0, len(content_list), 2):
content_temp = '[' + content_list[i] + "" + content_list[i + 1] + '。]'
content_temp = content_temp.replace("。。", "")
poetrys.append(content_temp)
else:
content = '[' + content + ']'
poetrys.append(content)
except Exception as e:
pass
poetrys = sorted(poetrys, key=lambda line: len(line))
# 统计每个字出现次数
all_words = []
for poetry in poetrys:
all_words += [word for word in poetry]
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)
# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word2ix = dict(zip(words, range(len(words))))
ix2word = lambda word: word2ix.get(word, len(words))
data = [list(map(ix2word, poetry)) for poetry in poetrys]
data=numpy.array(data)
return data,word2ix,ix2word
def train():
# 获取数据
data, word2ix, ix2word = get_data()
data = torch.from_numpy(data)
dataloader = torch.utils.data.DataLoader(data,
batch_size=batch_size,
shuffle=True,
num_workers=1)
# 模型定义
model = RNNModel(len(word2ix), batch_size, embed_size)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
model.to(device)
for epoch in range(epochs):
for ii, data_ in tqdm(enumerate(dataloader)):
data_ = data_.long().transpose(1, 0).contiguous()
data_ = data_.to(device)
optimizer.zero_grad()
input_, target = data_[:-1, :], data_[1:, :]
output, _ = model(input_)
loss = criterion(output, target.view(-1))
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model.bin' )
if __name__ == "__main__":
train()

0
rnn-poetry/run_server.py Normal file
View File