python bert code fix
This commit is contained in:
@@ -1,30 +1,29 @@
|
||||
# coding: UTF-8
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
# from pytorch_pretrained_bert import BertModel, BertTokenizer
|
||||
from transformers import BertModel, BertTokenizer
|
||||
|
||||
from transformers import BertModel, BertTokenizer,BertConfig
|
||||
import os
|
||||
|
||||
class Config(object):
|
||||
|
||||
"""配置参数"""
|
||||
def __init__(self, dataset):
|
||||
self.model_name = 'bert'
|
||||
self.train_path = dataset + '/data/train.txt'
|
||||
self.dev_path = dataset + '/data/dev.txt'
|
||||
self.test_path = dataset + '/data/test.txt'
|
||||
self.train_path = dataset + '/data/train.txt' # 训练集
|
||||
self.dev_path = dataset + '/data/dev.txt' # 验证集
|
||||
self.test_path = dataset + '/data/test.txt' # 测试集
|
||||
self.class_list = [x.strip() for x in open(
|
||||
dataset + '/data/class.txt').readlines()]
|
||||
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
dataset + '/data/class.txt').readlines()] # 类别名单
|
||||
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
|
||||
|
||||
|
||||
self.num_classes = len(self.class_list)
|
||||
self.num_epochs = 3
|
||||
self.batch_size = 128
|
||||
self.pad_size = 32
|
||||
self.learning_rate = 5e-5
|
||||
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
|
||||
self.num_classes = len(self.class_list) # 类别数
|
||||
self.num_epochs = 3 # epoch数
|
||||
self.batch_size = 128 # mini-batch大小
|
||||
self.pad_size = 32 # 每句话处理成的长度(短填长切)
|
||||
self.learning_rate = 5e-5 # 学习率
|
||||
self.bert_path = './bert'
|
||||
self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
|
||||
self.hidden_size = 768
|
||||
@@ -34,20 +33,16 @@ class Model(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super(Model, self).__init__()
|
||||
self.bert = BertModel.from_pretrained(config.bert_path)
|
||||
bert_config_file = os.path.join(config.bert_path, f'bert_config.json')
|
||||
bert_config = BertConfig.from_json_file(bert_config_file)
|
||||
self.bert = BertModel.from_pretrained(config.bert_path,config=bert_config)
|
||||
for param in self.bert.parameters():
|
||||
param.requires_grad = True
|
||||
self.fc = nn.Linear(config.hidden_size, config.num_classes)
|
||||
|
||||
|
||||
def forward(self, input_ids,# 输入的句子
|
||||
input_mask,# 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
|
||||
segments_ids
|
||||
):
|
||||
_, pooled = self.bert(input_ids, attention_mask=input_mask,token_type_ids=segments_ids)#pooled [batch_size, hidden_size]
|
||||
def forward(self, x):
|
||||
context = x[0] # 输入的句子
|
||||
mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
|
||||
_, pooled = self.bert(context, attention_mask=mask)
|
||||
out = self.fc(pooled)
|
||||
return out
|
||||
def loss(self,outputs,labels):
|
||||
criterion=F.cross_entropy
|
||||
loss = criterion(outputs, labels)
|
||||
return loss
|
||||
|
||||
Reference in New Issue
Block a user