2019-12-03 16:41:43 +08:00
|
|
|
|
import re
|
|
|
|
|
|
import tqdm
|
|
|
|
|
|
import torch
|
|
|
|
|
|
import collections
|
2019-12-13 14:39:11 +08:00
|
|
|
|
import pickle
|
2019-12-03 16:41:43 +08:00
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
2019-12-13 14:39:11 +08:00
|
|
|
|
from model import RNNModel,embed_size,hidden_dims,batch_size
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
2019-12-13 14:39:11 +08:00
|
|
|
|
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
epochs=100
|
|
|
|
|
|
lr=0.001
|
|
|
|
|
|
def get_data():
|
|
|
|
|
|
special_character_removal = re.compile(r'[^\w。, ]', re.IGNORECASE)
|
|
|
|
|
|
# 诗集
|
|
|
|
|
|
poetrys = []
|
2019-12-13 14:39:11 +08:00
|
|
|
|
peotry_path='data/poetry.txt'
|
|
|
|
|
|
with open(peotry_path,'r',encoding='utf-8') as f:
|
|
|
|
|
|
for content in f:
|
|
|
|
|
|
content=content.strip()
|
|
|
|
|
|
content = '[' + content + ']'
|
|
|
|
|
|
poetrys.append(content)
|
|
|
|
|
|
|
|
|
|
|
|
# poetrys = sorted(poetrys, key=lambda line: len(line))
|
2019-12-03 16:41:43 +08:00
|
|
|
|
# 统计每个字出现次数
|
|
|
|
|
|
all_words = []
|
|
|
|
|
|
for poetry in poetrys:
|
|
|
|
|
|
all_words += [word for word in poetry]
|
|
|
|
|
|
counter = collections.Counter(all_words)
|
|
|
|
|
|
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
|
|
|
|
|
|
words, _ = zip(*count_pairs)
|
|
|
|
|
|
# 取前多少个常用字
|
|
|
|
|
|
words = words[:len(words)] + (' ',)
|
|
|
|
|
|
# 每个字映射为一个数字ID
|
|
|
|
|
|
word2ix = dict(zip(words, range(len(words))))
|
2019-12-13 14:39:11 +08:00
|
|
|
|
ix2word = {v: k for k, v in word2ix.items()}
|
|
|
|
|
|
data = [[word2ix[c] for c in poetry ] for poetry in poetrys]
|
|
|
|
|
|
# data=numpy.array(data)
|
2019-12-03 16:41:43 +08:00
|
|
|
|
return data,word2ix,ix2word
|
|
|
|
|
|
|
2019-12-13 14:39:11 +08:00
|
|
|
|
def test(model):
|
|
|
|
|
|
start_idx=[word2ix['[']]
|
|
|
|
|
|
end_word=''
|
|
|
|
|
|
lens=0
|
|
|
|
|
|
hidden = None
|
|
|
|
|
|
ret=''
|
|
|
|
|
|
while end_word!=']' and len(ret)<100:
|
|
|
|
|
|
data_ = torch.tensor([start_idx],device=device).long()
|
|
|
|
|
|
# print("data size",data_.size())
|
|
|
|
|
|
output, hidden = model(data_, hidden)
|
|
|
|
|
|
# print("output size", output.size())
|
|
|
|
|
|
ouput_idx=output.view(-1).argmax().cpu()
|
|
|
|
|
|
# print('ouput_idx',ouput_idx)
|
|
|
|
|
|
# print('ouput_idx', ouput_idx.item())
|
|
|
|
|
|
ouput_idx=ouput_idx.item()
|
|
|
|
|
|
start_idx=[ouput_idx]
|
|
|
|
|
|
end_word=ix2word[ouput_idx]
|
|
|
|
|
|
ret+=end_word
|
|
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
2019-12-13 14:39:11 +08:00
|
|
|
|
|
|
|
|
|
|
def train():
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
|
|
|
|
|
# 模型定义
|
2019-12-13 14:39:11 +08:00
|
|
|
|
model = RNNModel(len(word2ix), embed_size, hidden_dims)
|
2019-12-03 16:41:43 +08:00
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
|
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
|
|
|
model.to(device)
|
2019-12-13 14:39:11 +08:00
|
|
|
|
model.train()
|
|
|
|
|
|
for epoch in (range(epochs)):
|
|
|
|
|
|
total_loss=0
|
|
|
|
|
|
count=0
|
|
|
|
|
|
for ii, data_ in tqdm.tqdm(enumerate(data)):
|
|
|
|
|
|
data_=torch.tensor(data_).long()
|
|
|
|
|
|
x = data_.unsqueeze(1).to(device)
|
2019-12-03 16:41:43 +08:00
|
|
|
|
optimizer.zero_grad()
|
2019-12-13 14:39:11 +08:00
|
|
|
|
y = torch.zeros(x.shape).to(device).long()
|
|
|
|
|
|
y[:-1], y[-1] = x[1:], x[0]
|
|
|
|
|
|
output, _ = model(x)
|
|
|
|
|
|
loss = criterion(output, y.view(-1))
|
|
|
|
|
|
"""
|
|
|
|
|
|
hidden=None
|
|
|
|
|
|
for k in range(2,max_lenth):
|
|
|
|
|
|
data1=data_[:k]
|
|
|
|
|
|
input_, target = data1[:-1, :], data1[1:, :]
|
|
|
|
|
|
output, hidden = model(input_,hidden)
|
|
|
|
|
|
loss = criterion(output, target.view(-1))
|
|
|
|
|
|
optimizer.step()
|
|
|
|
|
|
"""
|
2019-12-03 16:41:43 +08:00
|
|
|
|
loss.backward()
|
|
|
|
|
|
optimizer.step()
|
2019-12-13 14:39:11 +08:00
|
|
|
|
total_loss+=(loss.item())
|
|
|
|
|
|
count+=1
|
|
|
|
|
|
print(epoch,'loss=',total_loss/count)
|
|
|
|
|
|
torch.save(model.state_dict(), 'model.bin' )
|
|
|
|
|
|
chars=test(model)
|
|
|
|
|
|
print(chars)
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2019-12-13 14:39:11 +08:00
|
|
|
|
# 获取数据
|
|
|
|
|
|
data, word2ix, ix2word = get_data()
|
|
|
|
|
|
with open("word2ix.pkl", 'wb') as outfile:
|
|
|
|
|
|
pickle.dump(word2ix,outfile)
|
|
|
|
|
|
with open("ix2word.pkl", 'wb') as outfile:
|
|
|
|
|
|
pickle.dump(ix2word,outfile)
|
2019-12-03 16:41:43 +08:00
|
|
|
|
|
2019-12-13 14:39:11 +08:00
|
|
|
|
data=data[:100]
|
2019-12-03 16:41:43 +08:00
|
|
|
|
train()
|