Files
GPT2-Chinese/generate_texts.py
Duzeyao c4288cdba5 bugfix
2019-11-04 10:14:10 +08:00

187 lines
8.7 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import torch.nn.functional as F
import os
import argparse
from tqdm import trange
from transformers import GPT2LMHeadModel
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" # 此处设置程序使用哪些显卡
def is_word(word):
for item in list(word):
if item not in 'qwertyuiopasdfghjklzxcvbnm':
return False
return True
def _is_chinese_char(char):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
cp = ord(char)
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_sequence(model, context, length, n_ctx, tokenizer, temperature=1.0, top_k=30, top_p=0.0, repitition_penalty=1.0,
device='cpu'):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0)
generated = context
with torch.no_grad():
for _ in trange(length):
inputs = {'input_ids': generated[0][-(n_ctx - 1):].unsqueeze(0)}
outputs = model(
**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :]
for id in set(generated):
next_token_logits[id] /= repitition_penalty
next_token_logits = next_token_logits / temperature
next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
return generated
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--length', default=-1, type=int, required=False, help='生成长度')
parser.add_argument('--temperature', default=1, type=float, required=False, help='生成温度,越高越随机')
parser.add_argument('--topk', default=8, type=int, required=False, help='生成的时候最高几选一')
parser.add_argument('--topp', default=0, type=float, required=False, help='生成的时候积累概率最高多少')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='模型参数路径')
parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='词表路径')
parser.add_argument('--model_path', default='model/final_model', type=str, required=False, help='模型路径')
parser.add_argument('--save_path', default='generated/', type=str, required=False, help='存放生成的文件的路径')
parser.add_argument('--articles_per_title', default=5, type=int, required=False, help='每个标题生成多少篇文章')
parser.add_argument('--titles', default='萧炎', type=str, required=False, help='标题列表,是一个字符串,用空格分开')
parser.add_argument('--titles_file', default='', type=str, required=False,
help='标题列表文件文件中每行一个标题。如果这个选项有值则titles无效')
parser.add_argument('--no_wordpiece', action='store_true', help='不做word piece切词')
parser.add_argument('--segment', action='store_true', help='中文以词为单位')
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False)
args = parser.parse_args()
print('args:\n' + args.__repr__())
if args.segment:
from tokenizations import tokenization_bert_word_level as tokenization_bert
else:
from tokenizations import tokenization_bert
os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡
length = args.length
temperature = args.temperature
topk = args.topk
topp = args.topp
repetition_penalty = args.repetition_penalty
titles = args.titles.split() # 列表,里面每个元素是一个生成的标题
if args.titles_file:
with open(args.titles_file, 'r') as f:
titles = [line.strip('\n') for line in f.readlines()]
articles_per_title = args.articles_per_title # 这里定义一个标题生成多少篇文章
save_path = args.save_path # 设置存到哪
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = tokenization_bert.BertTokenizer(vocab_file=args.tokenizer_path)
model = GPT2LMHeadModel.from_pretrained(args.model_path)
model.to(device)
model.eval()
n_ctx = model.config.n_ctx
if not os.path.exists(save_path):
os.mkdir(save_path)
if length == -1:
length = model.config.n_ctx
for i, title in enumerate(titles):
for j in range(articles_per_title):
with open(save_path + str(i) + '-' + str(j) + '.txt', 'w') as f:
context_tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(title))
generated = 0
out = sample_sequence(
n_ctx=n_ctx,
model=model, length=length,
context=context_tokens, tokenizer=tokenizer,
temperature=temperature, top_k=topk, top_p=topp, repitition_penalty=repetition_penalty,
device=device
)
out = out.tolist()[0]
generated += 1
text = tokenizer.convert_ids_to_tokens(out)
for i, item in enumerate(text[:-1]): # 确保英文前后有空格
if is_word(item) and is_word(text[i + 1]):
text[i] = item + ' '
for i, item in enumerate(text):
if item == '[MASK]':
text[i] = ''
if item == '[CLS]' or item == '[SEP]':
text[i] = '\n'
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
text = ''.join(text).replace('##', '').strip()
# text = ''.join(text.split('\n')[:-1])
print(text)
f.write(text + '\n')
print("=" * 80)
if __name__ == '__main__':
main()