6 && $i % $Nk == 4) { $temp = SubWord($temp); } for ($t = 0; $t < 4; $t++) $w[$i][$t] = $w[$i - $Nk][$t] ^ $temp[$t]; } return $w; } function SubWord($w) {// apply SBox to 4-byte word w global $Sbox; // PHP needs explicit declaration to access global variables! for ($i = 0; $i < 4; $i++) $w[$i] = $Sbox[$w[$i]]; return $w; } function RotWord($w) {// rotate 4-byte word w left by one byte $w[4] = $w[0]; for ($i = 0; $i < 4; $i++) $w[$i] = $w[$i + 1]; return $w; } // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1] $Sbox = array(0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16); // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] $Rcon = array( array(0x00, 0x00, 0x00, 0x00), array(0x01, 0x00, 0x00, 0x00), array(0x02, 0x00, 0x00, 0x00), array(0x04, 0x00, 0x00, 0x00), array(0x08, 0x00, 0x00, 0x00), array(0x10, 0x00, 0x00, 0x00), array(0x20, 0x00, 0x00, 0x00), array(0x40, 0x00, 0x00, 0x00), array(0x80, 0x00, 0x00, 0x00), array(0x1b, 0x00, 0x00, 0x00), array(0x36, 0x00, 0x00, 0x00) ); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** * Encrypt a text using AES encryption in Counter mode of operation * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf * * Unicode multi-byte character safe * * @param plaintext source text to be encrypted * @param password the password to use to generate a key * @param nBits number of bits to be used in the key (128, 192, or 256) * @return encrypted text */ function AESEncryptCtr($plaintext, $password = "blue-lotus", $nBits = 128) { $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) return ''; // standard allows 128/192/256 bit keys // note PHP (5) gives us plaintext and password in UTF8 encoding! // use AES itself to encrypt password to get cipher key (using plain password as source for key // expansion) - gives us well encrypted key $nBytes = $nBits / 8; // no bytes in key $pwBytes = array(); for ($i = 0; $i < $nBytes; $i++) $pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff; $key = Cipher($pwBytes, KeyExpansion($pwBytes)); $key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in // 1st 8 bytes, block counter in 2nd 8 bytes $counterBlock = array(); $nonce = floor(microtime(true) * 1000); // timestamp: milliseconds since 1-Jan-1970 $nonceSec = floor($nonce / 1000); $nonceMs = $nonce % 1000; // encode nonce with seconds in 1st 4 bytes, and (repeated) ms part filling 2nd 4 bytes for ($i = 0; $i < 4; $i++) $counterBlock[$i] = urs($nonceSec, $i * 8) & 0xff; for ($i = 0; $i < 4; $i++) $counterBlock[$i + 4] = $nonceMs & 0xff; // and convert it to a string to go on the front of the ciphertext $ctrTxt = ''; for ($i = 0; $i < 8; $i++) $ctrTxt .= chr($counterBlock[$i]); // generate key schedule - an expansion of the key into distinct Key Rounds for each round $keySchedule = KeyExpansion($key); $blockCount = ceil(strlen($plaintext) / $blockSize); $ciphertxt = array(); // ciphertext as array of strings for ($b = 0; $b < $blockCount; $b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) // done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) for ($c = 0; $c < 4; $c++) $counterBlock[15 - $c] = urs($b, $c * 8) & 0xff; for ($c = 0; $c < 4; $c++) $counterBlock[15 - $c - 4] = urs($b / 0x100000000, $c * 8); $cipherCntr = Cipher($counterBlock, $keySchedule); // -- encrypt counter block -- // block size is reduced on final block $blockLength = $b < $blockCount - 1 ? $blockSize : (strlen($plaintext) - 1) % $blockSize + 1; $cipherByte = array(); for ($i = 0; $i < $blockLength; $i++) { // -- xor plaintext with ciphered counter byte-by-byte -- $cipherByte[$i] = $cipherCntr[$i] ^ ord(substr($plaintext, $b * $blockSize + $i, 1)); $cipherByte[$i] = chr($cipherByte[$i]); } $ciphertxt[$b] = implode('', $cipherByte); // escape troublesome characters in ciphertext } // implode is more efficient than repeated string concatenation $ciphertext = $ctrTxt . implode('', $ciphertxt); $ciphertext = base64_encode($ciphertext); return $ciphertext; } /** * Decrypt a text encrypted by AES in counter mode of operation * * @param ciphertext source text to be decrypted * @param password the password to use to generate a key * @param nBits number of bits to be used in the key (128, 192, or 256) * @return decrypted text */ function AESDecryptCtr($ciphertext, $password = "blue-lotus", $nBits = 128) { $blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES if (!($nBits == 128 || $nBits == 192 || $nBits == 256)) return ''; // standard allows 128/192/256 bit keys $ciphertext = base64_decode($ciphertext); // use AES to encrypt password (mirroring encrypt routine) $nBytes = $nBits / 8; // no bytes in key $pwBytes = array(); for ($i = 0; $i < $nBytes; $i++) $pwBytes[$i] = ord(substr($password, $i, 1)) & 0xff; $key = Cipher($pwBytes, KeyExpansion($pwBytes)); $key = array_merge($key, array_slice($key, 0, $nBytes - 16)); // expand key to 16/24/32 bytes long // recover nonce from 1st element of ciphertext $counterBlock = array(); $ctrTxt = substr($ciphertext, 0, 8); for ($i = 0; $i < 8; $i++) $counterBlock[$i] = ord(substr($ctrTxt, $i, 1)); // generate key schedule $keySchedule = KeyExpansion($key); // separate ciphertext into blocks (skipping past initial 8 bytes) $nBlocks = ceil((strlen($ciphertext) - 8) / $blockSize); $ct = array(); for ($b = 0; $b < $nBlocks; $b++) $ct[$b] = substr($ciphertext, 8 + $b * $blockSize, 16); $ciphertext = $ct; // ciphertext is now array of block-length strings // plaintext will get generated block-by-block into array of block-length strings $plaintxt = array(); for ($b = 0; $b < $nBlocks; $b++) { // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) for ($c = 0; $c < 4; $c++) $counterBlock[15 - $c] = urs($b, $c * 8) & 0xff; for ($c = 0; $c < 4; $c++) $counterBlock[15 - $c - 4] = urs(($b + 1) / 0x100000000 - 1, $c * 8) & 0xff; $cipherCntr = Cipher($counterBlock, $keySchedule); // encrypt counter block $plaintxtByte = array(); for ($i = 0; $i < strlen($ciphertext[$b]); $i++) { // -- xor plaintext with ciphered counter byte-by-byte -- $plaintxtByte[$i] = $cipherCntr[$i] ^ ord(substr($ciphertext[$b], $i, 1)); $plaintxtByte[$i] = chr($plaintxtByte[$i]); } $plaintxt[$b] = implode('', $plaintxtByte); } // join array of blocks into single plaintext string $plaintext = implode('', $plaintxt); return $plaintext; } /* * Unsigned right shift function, since PHP has neither >>> operator nor unsigned ints * * @param a number to be shifted (32-bit integer) * @param b number of bits to shift a to the right (0..31) * @return a right-shifted and zero-filled by b bits */ function urs($a, $b) { $a &= 0xffffffff; $b &= 0x1f; // (bounds check) if ($a & 0x80000000 && $b > 0) { // if left-most bit set $a = ($a >> 1) & 0x7fffffff; // right-shift one bit & clear left-most bit $a = $a >> ($b - 1); // remaining right-shifts } else { // otherwise $a = ($a >> $b); // use normal right-shift } return $a; }