* complex-numbers: add test template Resolves #1937 * complex-numbers: remove commented code Resolves #1937 * refactor for readability
164 lines
5.3 KiB
Python
164 lines
5.3 KiB
Python
from __future__ import division
|
|
import math
|
|
|
|
import unittest
|
|
|
|
from complex_numbers import ComplexNumber
|
|
|
|
# Tests adapted from `problem-specifications//canonical-data.json` @ v1.3.0
|
|
|
|
|
|
class ComplexNumbersTest(unittest.TestCase):
|
|
|
|
# Real part
|
|
|
|
def test_real_part_of_a_purely_real_number(self):
|
|
self.assertEqual(ComplexNumber(1, 0).real, 1)
|
|
|
|
def test_real_part_of_a_purely_imaginary_number(self):
|
|
self.assertEqual(ComplexNumber(0, 1).real, 0)
|
|
|
|
def test_real_part_of_a_number_with_real_and_imaginary_part(self):
|
|
self.assertEqual(ComplexNumber(1, 2).real, 1)
|
|
|
|
# Imaginary part
|
|
|
|
def test_imaginary_part_of_a_purely_real_number(self):
|
|
self.assertEqual(ComplexNumber(1, 0).imaginary, 0)
|
|
|
|
def test_imaginary_part_of_a_purely_imaginary_number(self):
|
|
self.assertEqual(ComplexNumber(0, 1).imaginary, 1)
|
|
|
|
def test_imaginary_part_of_a_number_with_real_and_imaginary_part(self):
|
|
self.assertEqual(ComplexNumber(1, 2).imaginary, 2)
|
|
|
|
def test_imaginary_unit(self):
|
|
self.assertEqual(
|
|
ComplexNumber(0, 1) * ComplexNumber(0, 1), ComplexNumber(-1, 0)
|
|
)
|
|
|
|
# Arithmetic
|
|
|
|
# Addition
|
|
|
|
def test_add_purely_real_numbers(self):
|
|
self.assertEqual(ComplexNumber(1, 0) + ComplexNumber(2, 0), ComplexNumber(3, 0))
|
|
|
|
def test_add_purely_imaginary_numbers(self):
|
|
self.assertEqual(ComplexNumber(0, 1) + ComplexNumber(0, 2), ComplexNumber(0, 3))
|
|
|
|
def test_add_numbers_with_real_and_imaginary_part(self):
|
|
self.assertEqual(ComplexNumber(1, 2) + ComplexNumber(3, 4), ComplexNumber(4, 6))
|
|
|
|
# Subtraction
|
|
|
|
def test_subtract_purely_real_numbers(self):
|
|
self.assertEqual(
|
|
ComplexNumber(1, 0) - ComplexNumber(2, 0), ComplexNumber(-1, 0)
|
|
)
|
|
|
|
def test_subtract_purely_imaginary_numbers(self):
|
|
self.assertEqual(
|
|
ComplexNumber(0, 1) - ComplexNumber(0, 2), ComplexNumber(0, -1)
|
|
)
|
|
|
|
def test_subtract_numbers_with_real_and_imaginary_part(self):
|
|
self.assertEqual(
|
|
ComplexNumber(1, 2) - ComplexNumber(3, 4), ComplexNumber(-2, -2)
|
|
)
|
|
|
|
# Multiplication
|
|
|
|
def test_multiply_purely_real_numbers(self):
|
|
self.assertEqual(ComplexNumber(1, 0) * ComplexNumber(2, 0), ComplexNumber(2, 0))
|
|
|
|
def test_multiply_purely_imaginary_numbers(self):
|
|
self.assertEqual(
|
|
ComplexNumber(0, 1) * ComplexNumber(0, 2), ComplexNumber(-2, 0)
|
|
)
|
|
|
|
def test_multiply_numbers_with_real_and_imaginary_part(self):
|
|
self.assertEqual(
|
|
ComplexNumber(1, 2) * ComplexNumber(3, 4), ComplexNumber(-5, 10)
|
|
)
|
|
|
|
# Division
|
|
|
|
def test_divide_purely_real_numbers(self):
|
|
self.assertAlmostEqual(
|
|
ComplexNumber(1, 0) / ComplexNumber(2, 0), ComplexNumber(0.5, 0)
|
|
)
|
|
|
|
def test_divide_purely_imaginary_numbers(self):
|
|
self.assertAlmostEqual(
|
|
ComplexNumber(0, 1) / ComplexNumber(0, 2), ComplexNumber(0.5, 0)
|
|
)
|
|
|
|
def test_divide_numbers_with_real_and_imaginary_part(self):
|
|
self.assertAlmostEqual(
|
|
ComplexNumber(1, 2) / ComplexNumber(3, 4), ComplexNumber(0.44, 0.08)
|
|
)
|
|
|
|
# Absolute value
|
|
|
|
def test_absolute_value_of_a_positive_purely_real_number(self):
|
|
self.assertEqual(abs(ComplexNumber(5, 0)), 5)
|
|
|
|
def test_absolute_value_of_a_negative_purely_real_number(self):
|
|
self.assertEqual(abs(ComplexNumber(-5, 0)), 5)
|
|
|
|
def test_absolute_value_of_a_purely_imaginary_number_with_positive_imaginary_part(
|
|
self
|
|
):
|
|
self.assertEqual(abs(ComplexNumber(0, 5)), 5)
|
|
|
|
def test_absolute_value_of_a_purely_imaginary_number_with_negative_imaginary_part(
|
|
self
|
|
):
|
|
self.assertEqual(abs(ComplexNumber(0, -5)), 5)
|
|
|
|
def test_absolute_value_of_a_number_with_real_and_imaginary_part(self):
|
|
self.assertEqual(abs(ComplexNumber(3, 4)), 5)
|
|
|
|
# Complex conjugate
|
|
|
|
def test_conjugate_a_purely_real_number(self):
|
|
self.assertEqual(ComplexNumber(5, 0).conjugate(), ComplexNumber(5, 0))
|
|
|
|
def test_conjugate_a_purely_imaginary_number(self):
|
|
self.assertEqual(ComplexNumber(0, 5).conjugate(), ComplexNumber(0, -5))
|
|
|
|
def test_conjugate_a_number_with_real_and_imaginary_part(self):
|
|
self.assertEqual(ComplexNumber(1, 1).conjugate(), ComplexNumber(1, -1))
|
|
|
|
# Complex exponential function
|
|
|
|
def test_euler_s_identity_formula(self):
|
|
self.assertAlmostEqual(ComplexNumber(0, math.pi).exp(), ComplexNumber(-1, 0))
|
|
|
|
def test_exponential_of_0(self):
|
|
self.assertAlmostEqual(ComplexNumber(0, 0).exp(), ComplexNumber(1, 0))
|
|
|
|
def test_exponential_of_a_purely_real_number(self):
|
|
self.assertAlmostEqual(ComplexNumber(1, 0).exp(), ComplexNumber(math.e, 0))
|
|
|
|
def test_exponential_of_a_number_with_real_and_imaginary_part(self):
|
|
self.assertAlmostEqual(
|
|
ComplexNumber(math.log(2), math.pi).exp(), ComplexNumber(-2, 0)
|
|
)
|
|
|
|
# Additional tests for this track
|
|
|
|
def test_equality_of_complex_numbers(self):
|
|
self.assertEqual(ComplexNumber(1, 2), ComplexNumber(1, 2))
|
|
|
|
def test_inequality_of_real_part(self):
|
|
self.assertNotEqual(ComplexNumber(1, 2), ComplexNumber(2, 2))
|
|
|
|
def test_inequality_of_imaginary_part(self):
|
|
self.assertNotEqual(ComplexNumber(1, 2), ComplexNumber(1, 1))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|