Files
python/exercises/diffie-hellman/diffie_hellman_test.py
2018-06-11 09:51:01 -04:00

57 lines
1.8 KiB
Python

import unittest
import diffie_hellman
# Tests adapted from `problem-specifications//canonical-data.json` @ v1.0.0
class DiffieHellmanTest(unittest.TestCase):
def test_private_key_is_in_range(self):
primes = [5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
for i in primes:
self.assertTrue(1 < diffie_hellman.private_key(i) < i)
# Can fail due to randomness, but most likely will not,
# due to pseudo-randomness and the large number chosen
def test_private_key_is_random(self):
p = 2147483647
private_keys = []
for i in range(5):
private_keys.append(diffie_hellman.private_key(p))
self.assertEqual(len(set(private_keys)), len(private_keys))
def test_can_calculate_public_key_using_private_key(self):
p = 23
g = 5
private = 6
expected = 8
actual = diffie_hellman.public_key(p, g, private)
self.assertEqual(actual, expected)
def test_can_calculate_secret_using_other_party_s_public_key(self):
p = 23
public = 19
private = 6
expected = 2
actual = diffie_hellman.secret(p, public, private)
self.assertEqual(actual, expected)
def test_key_exchange(self):
p = 23
g = 5
alice_private_key = diffie_hellman.private_key(p)
bob_private_key = diffie_hellman.private_key(p)
alice_public_key = diffie_hellman.public_key(p, g, alice_private_key)
bob_public_key = diffie_hellman.public_key(p, g, bob_private_key)
secret_a = diffie_hellman.secret(p, bob_public_key, alice_private_key)
secret_b = diffie_hellman.secret(p, alice_public_key, bob_private_key)
self.assertEqual(secret_a, secret_b)
if __name__ == '__main__':
unittest.main()