import unittest from diffie_hellman import private_key, public_key, secret # Tests adapted from `problem-specifications//canonical-data.json` @ v1.0.0 class DiffieHellmanTest(unittest.TestCase): def test_private_key_is_in_range_1_p(self): primes = [5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] for p in primes: self.assertTrue(1 < private_key(p) < p) def test_private_key_is_random(self): """ Can fail due to randomness, but most likely will not, due to pseudo-randomness and the large number chosen """ p = 2147483647 private_keys = [private_key(p) for _ in range(5)] self.assertEqual(len(set(private_keys)), len(private_keys)) def test_can_calculate_public_key_using_private_key(self): p = 23 g = 5 private_key = 6 self.assertEqual(8, public_key(p, g, private_key)) def test_can_calculate_secret_using_other_party_s_public_key(self): p = 23 their_public_key = 19 my_private_key = 6 self.assertEqual(2, secret(p, their_public_key, my_private_key)) def test_key_exchange(self): p = 23 g = 5 alice_private_key = private_key(p) bob_private_key = private_key(p) alice_public_key = public_key(p, g, alice_private_key) bob_public_key = public_key(p, g, bob_private_key) secret_a = secret(p, bob_public_key, alice_private_key) secret_b = secret(p, alice_public_key, bob_private_key) self.assertTrue(secret_a == secret_b) if __name__ == "__main__": unittest.main()