* Add new solution for the euler project problem 9 - precompute the squares. * Update sol4.py * updating DIRECTORY.md * Update sol4.py * Update sol4.py * Update sol4.py --------- Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru> Co-authored-by: MaximSmolskiy <MaximSmolskiy@users.noreply.github.com>
61 lines
1.3 KiB
Python
61 lines
1.3 KiB
Python
"""
|
|
Project Euler Problem 9: https://projecteuler.net/problem=9
|
|
|
|
Special Pythagorean triplet
|
|
|
|
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
|
|
|
a^2 + b^2 = c^2.
|
|
|
|
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
|
|
|
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
|
Find the product abc.
|
|
|
|
References:
|
|
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
|
"""
|
|
|
|
|
|
def get_squares(n: int) -> list[int]:
|
|
"""
|
|
>>> get_squares(0)
|
|
[]
|
|
>>> get_squares(1)
|
|
[0]
|
|
>>> get_squares(2)
|
|
[0, 1]
|
|
>>> get_squares(3)
|
|
[0, 1, 4]
|
|
>>> get_squares(4)
|
|
[0, 1, 4, 9]
|
|
"""
|
|
return [number * number for number in range(n)]
|
|
|
|
|
|
def solution(n: int = 1000) -> int:
|
|
"""
|
|
Precomputing squares and checking if a^2 + b^2 is the square by set look-up.
|
|
|
|
>>> solution(12)
|
|
60
|
|
>>> solution(36)
|
|
1620
|
|
"""
|
|
|
|
squares = get_squares(n)
|
|
squares_set = set(squares)
|
|
for a in range(1, n // 3):
|
|
for b in range(a + 1, (n - a) // 2 + 1):
|
|
if (
|
|
squares[a] + squares[b] in squares_set
|
|
and squares[n - a - b] == squares[a] + squares[b]
|
|
):
|
|
return a * b * (n - a - b)
|
|
|
|
return -1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"{solution() = }")
|