Files
Python/machine_learning/t_stochastic_neighbour_embedding.py
Khansa435 709c18ee9f Add t stochastic neighbour embedding using Iris dataset (#13476)
* Added t-SNE with Iris dataset example

* Added t-SNE with Iris dataset example

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated with descriptive variables

* Add descriptive variable names

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add Descriptive Variable names

* Adding Descriptive variable names

* Update machine_learning/t_stochastic_neighbour_embedding.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update machine_learning/t_stochastic_neighbour_embedding.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Improved line formatting

* Adding URL for t-SNE Wikipedia

* Apply suggestion from @cclauss

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2025-10-14 13:14:22 +02:00

179 lines
5.1 KiB
Python

"""
t-distributed stochastic neighbor embedding (t-SNE)
For more details, see:
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
"""
import doctest
import numpy as np
from numpy import ndarray
from sklearn.datasets import load_iris
def collect_dataset() -> tuple[ndarray, ndarray]:
"""
Load the Iris dataset and return features and labels.
Returns:
tuple[ndarray, ndarray]: Feature matrix and target labels.
>>> features, targets = collect_dataset()
>>> features.shape
(150, 4)
>>> targets.shape
(150,)
"""
iris_dataset = load_iris()
return np.array(iris_dataset.data), np.array(iris_dataset.target)
def compute_pairwise_affinities(data_matrix: ndarray, sigma: float = 1.0) -> ndarray:
"""
Compute high-dimensional affinities (P matrix) using a Gaussian kernel.
Args:
data_matrix: Input data of shape (n_samples, n_features).
sigma: Gaussian kernel bandwidth.
Returns:
ndarray: Symmetrized probability matrix.
>>> x = np.array([[0.0, 0.0], [1.0, 0.0]])
>>> probabilities = compute_pairwise_affinities(x)
>>> float(round(probabilities[0, 1], 3))
0.25
"""
n_samples = data_matrix.shape[0]
squared_sum = np.sum(np.square(data_matrix), axis=1)
squared_distance = np.add(
np.add(-2 * np.dot(data_matrix, data_matrix.T), squared_sum).T, squared_sum
)
affinity_matrix = np.exp(-squared_distance / (2 * sigma**2))
np.fill_diagonal(affinity_matrix, 0)
affinity_matrix /= np.sum(affinity_matrix)
return (affinity_matrix + affinity_matrix.T) / (2 * n_samples)
def compute_low_dim_affinities(embedding_matrix: ndarray) -> tuple[ndarray, ndarray]:
"""
Compute low-dimensional affinities (Q matrix) using a Student-t distribution.
Args:
embedding_matrix: Low-dimensional embedding of shape (n_samples, n_components).
Returns:
tuple[ndarray, ndarray]: (Q probability matrix, numerator matrix).
>>> y = np.array([[0.0, 0.0], [1.0, 0.0]])
>>> q_matrix, numerators = compute_low_dim_affinities(y)
>>> q_matrix.shape
(2, 2)
"""
squared_sum = np.sum(np.square(embedding_matrix), axis=1)
numerator_matrix = 1 / (
1
+ np.add(
np.add(-2 * np.dot(embedding_matrix, embedding_matrix.T), squared_sum).T,
squared_sum,
)
)
np.fill_diagonal(numerator_matrix, 0)
q_matrix = numerator_matrix / np.sum(numerator_matrix)
return q_matrix, numerator_matrix
def apply_tsne(
data_matrix: ndarray,
n_components: int = 2,
learning_rate: float = 200.0,
n_iter: int = 500,
) -> ndarray:
"""
Apply t-SNE for dimensionality reduction.
Args:
data_matrix: Original dataset (features).
n_components: Target dimension (2D or 3D).
learning_rate: Step size for gradient descent.
n_iter: Number of iterations.
Returns:
ndarray: Low-dimensional embedding of the data.
>>> features, _ = collect_dataset()
>>> embedding = apply_tsne(features, n_components=2, n_iter=50)
>>> embedding.shape
(150, 2)
"""
if n_components < 1 or n_iter < 1:
raise ValueError("n_components and n_iter must be >= 1")
n_samples = data_matrix.shape[0]
rng = np.random.default_rng()
embedding = rng.standard_normal((n_samples, n_components)) * 1e-4
high_dim_affinities = compute_pairwise_affinities(data_matrix)
high_dim_affinities = np.maximum(high_dim_affinities, 1e-12)
embedding_increment = np.zeros_like(embedding)
momentum = 0.5
for iteration in range(n_iter):
low_dim_affinities, numerator_matrix = compute_low_dim_affinities(embedding)
low_dim_affinities = np.maximum(low_dim_affinities, 1e-12)
affinity_diff = high_dim_affinities - low_dim_affinities
gradient = 4 * (
np.dot((affinity_diff * numerator_matrix), embedding)
- np.multiply(
np.sum(affinity_diff * numerator_matrix, axis=1)[:, np.newaxis],
embedding,
)
)
embedding_increment = momentum * embedding_increment - learning_rate * gradient
embedding += embedding_increment
if iteration == int(n_iter / 4):
momentum = 0.8
return embedding
def main() -> None:
"""
Run t-SNE on the Iris dataset and display the first 5 embeddings.
>>> main() # doctest: +ELLIPSIS
t-SNE embedding (first 5 points):
[[...
"""
features, _labels = collect_dataset()
embedding = apply_tsne(features, n_components=2, n_iter=300)
if not isinstance(embedding, np.ndarray):
raise TypeError("t-SNE embedding must be an ndarray")
print("t-SNE embedding (first 5 points):")
print(embedding[:5])
# Optional visualization (Ruff/mypy compliant)
# import matplotlib.pyplot as plt
# plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap="viridis")
# plt.title("t-SNE Visualization of the Iris Dataset")
# plt.xlabel("Dimension 1")
# plt.ylabel("Dimension 2")
# plt.show()
if __name__ == "__main__":
doctest.testmod()
main()