BST and RSA doctest (#8693)

* rsa key doctest

* move doctest to module docstring

* all tests to doctest

* moved is_right to property

* is right test

* fixed rsa doctest import

* Test error when deleting non-existing element

* fixing ruff EM102

* convert property 'is_right' to one-liner

Also use 'is' instead of '=='

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* child instead of children

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* remove type hint

* Update data_structures/binary_tree/binary_search_tree.py

---------

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
isidroas
2023-08-16 01:04:53 +02:00
committed by GitHub
parent cecf1fdd52
commit efaf526737
2 changed files with 98 additions and 82 deletions

View File

@@ -2,8 +2,7 @@ import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
from . import cryptomath_module, rabin_miller
def main() -> None:
@@ -13,20 +12,26 @@ def main() -> None:
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabinMiller.generate_large_prime(key_size)
print("Generating prime q...")
q = rabinMiller.generate_large_prime(key_size)
"""
>>> random.seed(0) # for repeatability
>>> public_key, private_key = generate_key(8)
>>> public_key
(26569, 239)
>>> private_key
(26569, 2855)
"""
p = rabin_miller.generate_large_prime(key_size)
q = rabin_miller.generate_large_prime(key_size)
n = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
# Generate e that is relatively prime to (p - 1) * (q - 1)
while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
break
print("Calculating d that is mod inverse of e...")
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
# Calculate d that is mod inverse of e
d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
public_key = (n, e)
private_key = (n, d)