Add flake8-builtins to pre-commit and fix errors (#7105)
Ignore `A003` Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
This commit is contained in:
@@ -182,7 +182,7 @@ class TwoHiddenLayerNeuralNetwork:
|
||||
loss = numpy.mean(numpy.square(output - self.feedforward()))
|
||||
print(f"Iteration {iteration} Loss: {loss}")
|
||||
|
||||
def predict(self, input: numpy.ndarray) -> int:
|
||||
def predict(self, input_arr: numpy.ndarray) -> int:
|
||||
"""
|
||||
Predict's the output for the given input values using
|
||||
the trained neural network.
|
||||
@@ -201,7 +201,7 @@ class TwoHiddenLayerNeuralNetwork:
|
||||
"""
|
||||
|
||||
# Input values for which the predictions are to be made.
|
||||
self.array = input
|
||||
self.array = input_arr
|
||||
|
||||
self.layer_between_input_and_first_hidden_layer = sigmoid(
|
||||
numpy.dot(self.array, self.input_layer_and_first_hidden_layer_weights)
|
||||
@@ -264,7 +264,7 @@ def example() -> int:
|
||||
True
|
||||
"""
|
||||
# Input values.
|
||||
input = numpy.array(
|
||||
test_input = numpy.array(
|
||||
(
|
||||
[0, 0, 0],
|
||||
[0, 0, 1],
|
||||
@@ -282,7 +282,9 @@ def example() -> int:
|
||||
output = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.float64)
|
||||
|
||||
# Calling neural network class.
|
||||
neural_network = TwoHiddenLayerNeuralNetwork(input_array=input, output_array=output)
|
||||
neural_network = TwoHiddenLayerNeuralNetwork(
|
||||
input_array=test_input, output_array=output
|
||||
)
|
||||
|
||||
# Calling training function.
|
||||
# Set give_loss to True if you want to see loss in every iteration.
|
||||
|
||||
@@ -140,24 +140,24 @@ class CNN:
|
||||
focus_list = np.asarray(focus1_list)
|
||||
return focus_list, data_featuremap
|
||||
|
||||
def pooling(self, featuremaps, size_pooling, type="average_pool"):
|
||||
def pooling(self, featuremaps, size_pooling, pooling_type="average_pool"):
|
||||
# pooling process
|
||||
size_map = len(featuremaps[0])
|
||||
size_pooled = int(size_map / size_pooling)
|
||||
featuremap_pooled = []
|
||||
for i_map in range(len(featuremaps)):
|
||||
map = featuremaps[i_map]
|
||||
feature_map = featuremaps[i_map]
|
||||
map_pooled = []
|
||||
for i_focus in range(0, size_map, size_pooling):
|
||||
for j_focus in range(0, size_map, size_pooling):
|
||||
focus = map[
|
||||
focus = feature_map[
|
||||
i_focus : i_focus + size_pooling,
|
||||
j_focus : j_focus + size_pooling,
|
||||
]
|
||||
if type == "average_pool":
|
||||
if pooling_type == "average_pool":
|
||||
# average pooling
|
||||
map_pooled.append(np.average(focus))
|
||||
elif type == "max_pooling":
|
||||
elif pooling_type == "max_pooling":
|
||||
# max pooling
|
||||
map_pooled.append(np.max(focus))
|
||||
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled, size_pooled)
|
||||
|
||||
@@ -182,7 +182,7 @@ samples = [
|
||||
[0.2012, 0.2611, 5.4631],
|
||||
]
|
||||
|
||||
exit = [
|
||||
target = [
|
||||
-1,
|
||||
-1,
|
||||
-1,
|
||||
@@ -222,7 +222,7 @@ if __name__ == "__main__":
|
||||
doctest.testmod()
|
||||
|
||||
network = Perceptron(
|
||||
sample=samples, target=exit, learning_rate=0.01, epoch_number=1000, bias=-1
|
||||
sample=samples, target=target, learning_rate=0.01, epoch_number=1000, bias=-1
|
||||
)
|
||||
network.training()
|
||||
print("Finished training perceptron")
|
||||
|
||||
Reference in New Issue
Block a user