Add Project Euler problem 131 solution 1 (#8179)
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
0
project_euler/problem_131/__init__.py
Normal file
0
project_euler/problem_131/__init__.py
Normal file
56
project_euler/problem_131/sol1.py
Normal file
56
project_euler/problem_131/sol1.py
Normal file
@@ -0,0 +1,56 @@
|
||||
"""
|
||||
Project Euler Problem 131: https://projecteuler.net/problem=131
|
||||
|
||||
There are some prime values, p, for which there exists a positive integer, n,
|
||||
such that the expression n^3 + n^2p is a perfect cube.
|
||||
|
||||
For example, when p = 19, 8^3 + 8^2 x 19 = 12^3.
|
||||
|
||||
What is perhaps most surprising is that for each prime with this property
|
||||
the value of n is unique, and there are only four such primes below one-hundred.
|
||||
|
||||
How many primes below one million have this remarkable property?
|
||||
"""
|
||||
|
||||
from math import isqrt
|
||||
|
||||
|
||||
def is_prime(number: int) -> bool:
|
||||
"""
|
||||
Determines whether number is prime
|
||||
|
||||
>>> is_prime(3)
|
||||
True
|
||||
|
||||
>>> is_prime(4)
|
||||
False
|
||||
"""
|
||||
|
||||
for divisor in range(2, isqrt(number) + 1):
|
||||
if number % divisor == 0:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def solution(max_prime: int = 10**6) -> int:
|
||||
"""
|
||||
Returns number of primes below max_prime with the property
|
||||
|
||||
>>> solution(100)
|
||||
4
|
||||
"""
|
||||
|
||||
primes_count = 0
|
||||
cube_index = 1
|
||||
prime_candidate = 7
|
||||
while prime_candidate < max_prime:
|
||||
primes_count += is_prime(prime_candidate)
|
||||
|
||||
cube_index += 1
|
||||
prime_candidate += 6 * cube_index
|
||||
|
||||
return primes_count
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
||||
Reference in New Issue
Block a user