Delete arithmetic_analysis/ directory and relocate its contents (#10824)
* Remove eval from arithmetic_analysis/newton_raphson.py
* Relocate contents of arithmetic_analysis/
Delete the arithmetic_analysis/ directory and relocate its files because
the purpose of the directory was always ill-defined. "Arithmetic
analysis" isn't a field of math, and the directory's files contained
algorithms for linear algebra, numerical analysis, and physics.
Relocated the directory's linear algebra algorithms to linear_algebra/,
its numerical analysis algorithms to a new subdirectory called
maths/numerical_analysis/, and its single physics algorithm to physics/.
* updating DIRECTORY.md
---------
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
86
maths/numerical_analysis/simpson_rule.py
Normal file
86
maths/numerical_analysis/simpson_rule.py
Normal file
@@ -0,0 +1,86 @@
|
||||
"""
|
||||
Numerical integration or quadrature for a smooth function f with known values at x_i
|
||||
|
||||
This method is the classical approach of summing 'Equally Spaced Abscissas'
|
||||
|
||||
method 2:
|
||||
"Simpson Rule"
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def method_2(boundary: list[int], steps: int) -> float:
|
||||
# "Simpson Rule"
|
||||
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
|
||||
"""
|
||||
Calculate the definite integral of a function using Simpson's Rule.
|
||||
:param boundary: A list containing the lower and upper bounds of integration.
|
||||
:param steps: The number of steps or resolution for the integration.
|
||||
:return: The approximate integral value.
|
||||
|
||||
>>> round(method_2([0, 2, 4], 10), 10)
|
||||
2.6666666667
|
||||
>>> round(method_2([2, 0], 10), 10)
|
||||
-0.2666666667
|
||||
>>> round(method_2([-2, -1], 10), 10)
|
||||
2.172
|
||||
>>> round(method_2([0, 1], 10), 10)
|
||||
0.3333333333
|
||||
>>> round(method_2([0, 2], 10), 10)
|
||||
2.6666666667
|
||||
>>> round(method_2([0, 2], 100), 10)
|
||||
2.5621226667
|
||||
>>> round(method_2([0, 1], 1000), 10)
|
||||
0.3320026653
|
||||
>>> round(method_2([0, 2], 0), 10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ZeroDivisionError: Number of steps must be greater than zero
|
||||
>>> round(method_2([0, 2], -10), 10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ZeroDivisionError: Number of steps must be greater than zero
|
||||
"""
|
||||
if steps <= 0:
|
||||
raise ZeroDivisionError("Number of steps must be greater than zero")
|
||||
|
||||
h = (boundary[1] - boundary[0]) / steps
|
||||
a = boundary[0]
|
||||
b = boundary[1]
|
||||
x_i = make_points(a, b, h)
|
||||
y = 0.0
|
||||
y += (h / 3.0) * f(a)
|
||||
cnt = 2
|
||||
for i in x_i:
|
||||
y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i)
|
||||
cnt += 1
|
||||
y += (h / 3.0) * f(b)
|
||||
return y
|
||||
|
||||
|
||||
def make_points(a, b, h):
|
||||
x = a + h
|
||||
while x < (b - h):
|
||||
yield x
|
||||
x = x + h
|
||||
|
||||
|
||||
def f(x): # enter your function here
|
||||
y = (x - 0) * (x - 0)
|
||||
return y
|
||||
|
||||
|
||||
def main():
|
||||
a = 0.0 # Lower bound of integration
|
||||
b = 1.0 # Upper bound of integration
|
||||
steps = 10.0 # number of steps or resolution
|
||||
boundary = [a, b] # boundary of integration
|
||||
y = method_2(boundary, steps)
|
||||
print(f"y = {y}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
main()
|
||||
Reference in New Issue
Block a user